Résumé
Le concept mathématique de problème bien posé provient d'une définition de Hadamard qui pensait que les modèles mathématiques de phénomènes physiques devraient avoir les propriétés suivantes : Une solution existe ; La solution est unique ; La solution dépend de façon continue des données dans le cadre d’une topologie raisonnable. Le problème de Dirichlet pour l’équation de Laplace et l’équation de la chaleur avec spécification de conditions initiales sont des formulations bien posées. Ces problèmes peuvent être qualifiés de « naturels », dans le sens où il existe des processus physiques dont les grandeurs observées constituent des solutions à ces problèmes. L’inversion du temps dans l’équation de la chaleur, c'est-à-dire le problème consistant à déduire une distribution passée de la température à partir d’un état final n’est au contraire pas bien posé ; sa solution est en effet très sensible à des perturbations de l’état final. Il est fréquent que les problèmes inverses ne soient pas bien posés. Bien qu’ils soient typiquement continus en termes d’analyse fonctionnelle, la recherche d’une solution numérique à l’aide de méthodes discrètes (« discrétisation » de l’espace et du temps) s’avère intrinsèquement instable, c'est-à-dire que de simples erreurs d’arrondis dans les données ou l’augmentation de la précision de la méthode exercent sur les résultats des effets « considérables ». En mécanique des milieux continus, un problème bien posé est un problème dans lequel la frontière du domaine considéré admet une partition en deux sous-ensembles et sur lesquels les conditions de bord imposées concernent les déplacements pour le premier et les efforts pour le second. doit être non vide afin de garantir l'unicité de la solution. En effet si est vide alors le champ de déplacement peut s'exprimer à un mouvement de corps rigide près. De plus, la partition de la frontière peut s’opérer suivant les trois directions de l’espace. Plus précisément, sur une même partie de la frontière, il est possible d’imposer à la fois un déplacement et un effort si ces deux contraintes concernent des directions orthogonales de l’espace.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.