Johan Auwerx is Professor at the École Polytechnique Fédérale in Lausanne, Switzerland, where he occupies the Nestle Chair in Energy Metabolism. Dr. Auwerx has been using molecular physiology and systems genetics to understand metabolism in health, aging and disease. Much of his work focused on understanding how diet, exercise and hormones control metabolism through changing the expression of genes by altering the activity of transcription factors and their associated cofactors. His work was instrumental for the development of agonists of nuclear receptors - a particular class of transcription factors - into drugs, which now are used to treat high blood lipid levels, fatty liver, and type 2 diabetes. Dr. Auwerx was amongst the first to recognize that transcriptional cofactors, which fine-tune the activity of transcription factors, act as energy sensors/effectors that influence metabolic homeostasis. His research validated these cofactors as novel targets to treat metabolic diseases, and spurred the clinical use of natural compounds, such as resveratrol, as modulators of these cofactor pathways.
Johan Auwerx was elected as a member of EMBO in 2003 and is the recipient of a dozen of international scientific prizes, including the Danone International Nutrition Award, the Oskar Minkowski Prize, and the Morgagni Gold Medal. His work is highly cited by his peers with a h-factor of over 100. He is an editorial board member of several journals, including Cell Metabolism, Molecular Systems Biology, The EMBO Journal, Journal of Cell Biology, Cell, and Science. Dr. Auwerx co-founded a handful of biotech companies, including Carex, PhytoDia, and most recently Mitobridge, and has served on several scientific advisory boards.
Dr. Auwerx received both his MD and PhD in Molecular Endocrinology at the Katholieke Universiteit in Leuven, Belgium. He was a post-doctoral research fellow in the Departments of Medicine and Genetics of the University of Washington in Seattle.
Elda Fischi-Gomez holds a BsC and a MsC degree in Telecommunication Engineering from the Polytechnic University of Catalonia (UPC, Barcelona, Spain) and a PhD in Electrical Engineering from the Swiss Federal Institute of Technology (EPFL, Lausanne, Switzerland, 2015). Her main research interests center on the development and application of novel MRI techniques to clinics by optimising the inter-play between multi-modal MR analysis, MR physic/hardware and the underlying clinical neuroscience. She has worked as a post-doctoral fellow at the A.A. Martinos Center of Biomedical Imaging of the Massachusetts General Hospital, Harvard Medical School (Boston, MA, USA) with a Swiss National Foundation Fellowship. Since 2019 she joined the Signal Processing Laboratory 5 of the Swiss Federal Institute of Technology Lausanne (EPFL) with a SPN-PHRT individual grant from the EPFL-ETH domain on microstructure imaging for multiple sclerosis.
Education
MTE, Managing the Technology Enterprise Program (2000), IMD, Lausanne
Ph.D. in Biomedical Engineering & Engineering Mechanics (1990) Iowa State University, Ames, Iowa.
MS in Biomedical Engineering (1987) Iowa State University, Ames, Iowa.
Diploma in Mechanical Engineering (1985) National Technical University of Athens.
Professional Activities
2002 - present: Professor and director of LHTC
2010 - present: Founder and director of Rheon Medical SA, Préverenges, Switzerland
2008 - present: Founder and director of Antlia S.A., PSE-C, EPFL campus, Switzerland
1998 - 2007: Founder and Scientific Director of EndoArt S.A., Lausanne, Switzerland
1996 - 2002: Assistant professor at the Biomedical Engineering Laboratory, Swiss Federal Institute of Technology, Lausanne, Switzerland.
1991 - 1996: Research Associate at Swiss Federal Institute of Technology - Lausanne
1990 - 1991: Lecturer, Iowa State University
Jean-Philippe Thiran was born in Namur, Belgium, in August 1970. He received the Electrical Engineering degree and the PhD degree from the Université catholique de Louvain (UCL), Louvain-la-Neuve, Belgium, in 1993 and 1997, respectively. From 1993 to 1997, he was the co-ordinator of the medical image analysis group of the Communications and Remote Sensing Laboratory at UCL, mainly working on medical image analysis. Dr Jean-Philippe Thiran joined the Signal Processing Institute (ITS) of the Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland, in February 1998 as a senior lecturer. He was promoted to Assistant Professor in 2004, to Associate Professor in 2011 and is now a Full Professor since 2020. He also holds a 20% position at the Department of Radiology of the University of Lausanne (UNIL) and of the Lausanne University Hospital (CHUV) as Associate Professor ad personam. Dr Thiran's current scientific interests include
Computational medical imaging: acquisition, reconstruction and analysis of imaging data, with emphasis on regularized linear inverse problems (compressed sensing, convex optimization). Applications to medical imaging: diffusion MRI, ultrasound imaging, inverse planning in radiotherapy, etc.Computer vision & machine learning: image and video analysis, with application to facial expression recognition, eye tracking, lip reading, industrial inspection, medical image analysis, etc.
Cathrin Brisken, MD, PhD, is Associate Professor of Life Sciences at the Swiss Federal Institute of Technology Lausanne (EPFL). Dr. Brisken is internationally recognized for her work on endocrine control of mammary gland development and breast carcinogenesis.
Dr. Brisken received her MD and her PhD degree in Biophysics from the Georg August University of Göttingen, Germany. She completed her postdoctoral work in cancer biology with Dr. R.A. Weinberg at the Whitehead Institute of Biomedical Research in Cambridge, MA, USA. She previously held appointments at the Cancer Center of the Massachusetts General Hospital, Harvard Medical School, Boston and the Swiss Institute for Experimental Cancer Research (ISREC).
Research in Dr. Brisken’s laboratory focuses on the cellular and molecular underpinnings of estrogen and progesterone receptor signaling in the breast and the respective roles of these hormones and hormonally active compounds in carcinogenesis. The aim is to understand how recurrent exposures to endogenous and exogenous hormones contribute to breast carcinogenesis in order to better prevent and treat the disease. The laboratory has pioneered in vivo approaches to genetically dissect the role of the reproductive hormones in driving mouse mammary gland development and shown how they control intercellular communication. Dr. Brisken’s group has developed ex vivo and humanized mouse models using patient samples to study hormone action in human tissues in normal settings and during disease progression.
Dr. Brisken is member of the International Breast Cancer Study Group (IBCSG) Biological Protocol Working Group. She served as Dean of EPFL Doctoral School (more than 2000 PhD students in 18 PhD programs), as member of the Hinterzartener Kreis, the oncology think-tank associated with the German Science Foundation, and numerous Swiss, European, and AACR committees. She co-founded the International Cancer Prevention Institute.
Henry Markram started a dual scientific and medical career at the University of Cape Town, in South Africa. His scientific work in the 80s revealed the polymodal receptive fields of pontomedullary reticular formation neurons in vivo and how acetylcholine re-organized these sensory maps.
He moved to Israel in 1988 and obtained his PhD at the Weizmann Institute where he discovered a link between acetylcholine and memory mechanisms by being the first to show that acetylcholine modulates the NMDA receptor in vitro studies, and thereby gates which synapses can undergo synaptic plasticity. He was also the first to characterize the electrical and anatomical properties of the cholinergic neurons in the medial septum diagonal band.
He carried out a first postdoctoral study as a Fulbright Scholar at the NIH, on the biophysics of ion channels on synaptic vesicles using sub-fractionation methods to isolate synaptic vesicles and patch-clamp recordings to characterize the ion channels. He carried out a second postdoctoral study at the Max Planck Institute, as a Minerva Fellow, where he discovered that individual action potentials propagating back into dendrites also cause pulsed influx of Ca2 into the dendrites and found that sub-threshold activity could also activated a low threshold Ca2 channel. He developed a model to show how different types of electrical activities can divert Ca2 to activate different intracellular targets depending on the speed of Ca2 influx an insight that helps explain how Ca2 acts as a universal second messenger. His most well known discovery is that of the millisecond watershed to judge the relevance of communication between neurons marked by the back-propagating action potential. This phenomenon is now called Spike Timing Dependent Plasticity (STDP), which many laboratories around the world have subsequently found in multiple brain regions and many theoreticians have incorporated as a learning rule. At the Max-Planck he also started exploring the micro-anatomical and physiological principles of the different neurons of the neocortex and of the mono-synaptic connections that they form - the first step towards a systematic reverse engineering of the neocortical microcircuitry to derive the blue prints of the cortical column in a manner that would allow computer model reconstruction.
He received a tenure track position at the Weizmann Institute where he continued the reverse engineering studies and also discovered a number of core principles of the structural and functional organization such as differential signaling onto different neurons, models of dynamic synapses with Misha Tsodyks, the computational functions of dynamic synapses, and how GABAergic neurons map onto interneurons and pyramidal neurons. A major contribution during this period was his discovery of Redistribution of Synaptic Efficacy (RSE), where he showed that co-activation of neurons does not only alter synaptic strength, but also the dynamics of transmission. At the Weizmann, he also found the tabula rasa principle which governs the random structural connectivity between pyramidal neurons and a non-random functional connectivity due to target selection. Markram also developed a novel computation framework with Wolfgang Maass to account for the impact of multiple time constants in neurons and synapses on information processing called liquid computing or high entropy computing.
In 2002, he was appointed Full professor at the EPFL where he founded and directed the Brain Mind Institute. During this time Markram continued his reverse engineering approaches and developed a series of new technologies to allow large-scale multi-neuron patch-clamp studies. Markrams lab discovered a novel microcircuit plasticity phenomenon where connections are formed and eliminated in a Darwinian manner as apposed to where synapses are strengthening or weakened as found for LTP. This was the first demonstration that neural circuits are constantly being re-wired and excitation can boost the rate of re-wiring.
At the EPFL he also completed the much of the reverse engineering studies on the neocortical microcircuitry, revealing deeper insight into the circuit design and built databases of the blue-print of the cortical column. In 2005 he used these databases to launched the Blue Brain Project. The BBP used IBMs most advanced supercomputers to reconstruct a detailed computer model of the neocortical column composed of 10000 neurons, more than 340 different types of neurons distributed according to a layer-based recipe of composition and interconnected with 30 million synapses (6 different types) according to synaptic mapping recipes. The Blue Brain team built dozens of applications that now allow automated reconstruction, simulation, visualization, analysis and calibration of detailed microcircuits. This Proof of Concept completed, Markrams lab has now set the agenda towards whole brain and molecular modeling.
With an in depth understanding of the neocortical microcircuit, Markram set a path to determine how the neocortex changes in Autism. He found hyper-reactivity due to hyper-connectivity in the circuitry and hyper-plasticity due to hyper-NMDA expression. Similar findings in the Amygdala together with behavioral evidence that the animal model of autism expressed hyper-fear led to the novel theory of Autism called the Intense World Syndrome proposed by Henry and Kamila Markram. The Intense World Syndrome claims that the brain of an Autist is hyper-sensitive and hyper-plastic which renders the world painfully intense and the brain overly autonomous. The theory is acquiring rapid recognition and many new studies have extended the findings to other brain regions and to other models of autism.
Markram aims to eventually build detailed computer models of brains of mammals to pioneer simulation-based research in the neuroscience which could serve to aggregate, integrate, unify and validate our knowledge of the brain and to use such a facility as a new tool to explore the emergence of intelligence and higher cognitive functions in the brain, and explore hypotheses of diseases as well as treatments.
Awards:
1999 Young Investigator Award Plenary Lectureship
, International Society for Neurochemistry
2011 Fellow
, ESMRMB
2011 Teaching Award
, Section Sciences de la Vie, EPFL