Developmental biology is the study of the process by which animals and plants grow and develop. Developmental biology also encompasses the biology of regeneration, asexual reproduction, metamorphosis, and the growth and differentiation of stem cells in the adult organism.
The main processes involved in the embryonic development of animals are: tissue patterning (via regional specification and patterned cell differentiation); tissue growth; and tissue morphogenesis.
Regional specification refers to the processes that create the spatial patterns in a ball or sheet of initially similar cells. This generally involves the action of cytoplasmic determinants, located within parts of the fertilized egg, and of inductive signals emitted from signaling centers in the embryo. The early stages of regional specification do not generate functional differentiated cells, but cell populations committed to developing to a specific region or part of the organism. These are defined by the expression of specific combinations of transcription factors.
Cell differentiation relates specifically to the formation of functional cell types such as nerve, muscle, secretory epithelia, etc. Differentiated cells contain large amounts of specific proteins associated with cell function.
Morphogenesis relates to the formation of a three-dimensional shape. It mainly involves the orchestrated movements of cell sheets and of individual cells. Morphogenesis is important for creating the three germ layers of the early embryo (ectoderm, mesoderm, and endoderm) and for building up complex structures during organ development.
Tissue growth involves both an overall increase in tissue size, and also the differential growth of parts (allometry) which contributes to morphogenesis. Growth mostly occurs through cell proliferation but also through changes in cell size or the deposition of extracellular materials.
The development of plants involves similar processes to that of animals. However, plant cells are mostly immotile so morphogenesis is achieved by differential growth, without cell movements.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Students will learn essentials of cell and developmental biology with an engineering mind set, with an emphasis on animal model systems and quantitative approaches.
Basic course in biochemistry as well as cellular and molecular biology for non-life science students enrolling at the Master or PhD thesis level from various engineering disciplines. It reviews essent
Ce cours est une préparation intensive à l'examen d'entrée en 3ème année de Médecine. Les matières enseignées sont la morphologie macroscopique (anatomie) , microscopique (histologie) de la tête, du c
Ce cours décrit les mécanismes fondamentaux du système immunitaire. Ses connaissances seront ensuite utilisées pour mieux comprendre les bases immunologiques de la vaccination, de la transplantation,
Ce cours décrit les mécanismes fondamentaux du système immunitaire pour mieux comprendre les bases immunologiques dela vaccination, de la transplantation, de l’immunothérapie, de l'allergie et des mal
Active in live imaging, light sheet microscopy and organoids. Viventis Microscopy specializes in cutting-edge light sheet microscopes for live imaging of organoids, spheroids, and model embryos, offering high-resolution capabilities for tracking dynamic processes.
Embryology (from Greek ἔμβρυον, embryon, "the unborn, embryo"; and -λογία, -logia) is the branch of animal biology that studies the prenatal development of gametes (sex cells), fertilization, and development of embryos and fetuses. Additionally, embryology encompasses the study of congenital disorders that occur before birth, known as teratology. Early embryology was proposed by Marcello Malpighi, and known as preformationism, the theory that organisms develop from pre-existing miniature versions of themselves.
Reproductive biology includes both sexual and asexual reproduction. Reproductive biology includes a wide number of fields: Reproductive systems Endocrinology Sexual development (Puberty) Sexual maturity Reproduction Fertility Human reproduction Endocrinology Human reproductive biology is primarily controlled through hormones, which send signals to the human reproductive structures to influence growth and maturation. These hormones are secreted by endocrine glands, and spread to different tissues in the human body.
Endocrinology (from endocrine + -ology) is a branch of biology and medicine dealing with the endocrine system, its diseases, and its specific secretions known as hormones. It is also concerned with the integration of developmental events proliferation, growth, and differentiation, and the psychological or behavioral activities of metabolism, growth and development, tissue function, sleep, digestion, respiration, excretion, mood, stress, lactation, movement, reproduction, and sensory perception caused by hormones.
Pseudohermaphroditism is a condition in which an individual has a matching chromosomal and gonadal tissue (ovary or testis) sex, but mismatching external genitalia. Female pseudohermaphroditism refers to an individual with ovaries and external genitalia resembling those of a male. Male pseudohermaphroditism refers to an individual with testes and external genitalia resembling those of a female. In some cases, external sex organs associated with pseudohermaphroditism appear intermediate between a typical clitoris and penis.
The yolk sac is a membranous sac attached to an embryo, formed by cells of the hypoblast layer of the bilaminar embryonic disc. This is alternatively called the umbilical vesicle by the Terminologia Embryologica (TE), though yolk sac is far more widely used. In humans, the yolk sac is important in early embryonic blood supply, and much of it is incorporated into the primordial gut during the fourth week of embryonic development. The yolk sac is the first element seen within the gestational sac during pregnancy, usually at 3 days gestation.
Small for gestational age (SGA) newborns are those who are smaller in size than normal for the gestational age. SGA is most commonly defined as a weight below the 10th percentile for the gestational age. SGA predicts susceptibility to hypoglycemia, hypothermia, and polycythemia. By definition, at least 10% of all newborns will be labeled SGA. All SGA babies should be watched for signs of failure to thrive, hypoglycemia and other health conditions.
Constitutive heterochromatin is essential for transcriptional silencing and genome integrity. The establishment of constitutive heterochromatin in early embryos and its role in early fruitfly development are unknown. Lysine 9 trimethylation of histone H3 ( ...
Background Socio-emotional difficulties often result from very preterm (VPT) birth. The amygdala's developmental trajectory, including its nuclei, has been recognized as a significant factor in observed difficulties. This study aims to assess the relations ...
The adaptation of organisms to their environment depends on the innovative potential inherent to genetic variation. In complex organisms such as mammals, processes like development and immunity require tight gene regulation. Complex forms emerge more often ...