Related concepts (14)
Logic
Logic is the study of correct reasoning. It includes both formal and informal logic. Formal logic is the science of deductively valid inferences or logical truths. It studies how conclusions follow from premises due to the structure of arguments alone, independent of their topic and content. Informal logic is associated with informal fallacies, critical thinking, and argumentation theory. It examines arguments expressed in natural language while formal logic uses formal language.
Modus tollens
In propositional logic, modus tollens (ˈmoʊdəs_ˈtɒlɛnz) (MT), also known as modus tollendo tollens (Latin for "method of removing by taking away") and denying the consequent, is a deductive argument form and a rule of inference. Modus tollens takes the form of "If P, then Q. Not Q. Therefore, not P." It is an application of the general truth that if a statement is true, then so is its contrapositive. The form shows that inference from P implies Q to the negation of Q implies the negation of P is a valid argument.
Logical form
In logic, logical form of a statement is a precisely-specified semantic version of that statement in a formal system. Informally, the logical form attempts to formalize a possibly ambiguous statement into a statement with a precise, unambiguous logical interpretation with respect to a formal system. In an ideal formal language, the meaning of a logical form can be determined unambiguously from syntax alone. Logical forms are semantic, not syntactic constructs; therefore, there may be more than one string that represents the same logical form in a given language.
Disjunctive syllogism
In classical logic, disjunctive syllogism (historically known as modus tollendo ponens (MTP), Latin for "mode that affirms by denying") is a valid argument form which is a syllogism having a disjunctive statement for one of its premises. An example in English: The breach is a safety violation, or it is not subject to fines. The breach is not a safety violation. Therefore, it is not subject to fines. In propositional logic, disjunctive syllogism (also known as disjunction elimination and or elimination, or abbreviated ∨E), is a valid rule of inference.
Rule of inference
In philosophy of logic and logic, a rule of inference, inference rule or transformation rule is a logical form consisting of a function which takes premises, analyzes their syntax, and returns a conclusion (or conclusions). For example, the rule of inference called modus ponens takes two premises, one in the form "If p then q" and another in the form "p", and returns the conclusion "q". The rule is valid with respect to the semantics of classical logic (as well as the semantics of many other non-classical logics), in the sense that if the premises are true (under an interpretation), then so is the conclusion.
Hilbert system
In mathematical physics, Hilbert system is an infrequently used term for a physical system described by a C*-algebra. In logic, especially mathematical logic, a Hilbert system, sometimes called Hilbert calculus, Hilbert-style deductive system or Hilbert–Ackermann system, is a type of system of formal deduction attributed to Gottlob Frege and David Hilbert. These deductive systems are most often studied for first-order logic, but are of interest for other logics as well.
Modus ponens
In propositional logic, modus ponens (ˈmoʊdəs_ˈpoʊnɛnz; MP), also known as modus ponendo ponens (Latin for "method of putting by placing"), implication elimination, or affirming the antecedent, is a deductive argument form and rule of inference. It can be summarized as "P implies Q. P is true. Therefore Q must also be true." Modus ponens is closely related to another valid form of argument, modus tollens. Both have apparently similar but invalid forms such as affirming the consequent, denying the antecedent, and evidence of absence.
Transposition (logic)
In propositional logic, transposition is a valid rule of replacement that permits one to switch the antecedent with the consequent of a conditional statement in a logical proof if they are also both negated. It is the inference from the truth of "A implies B" to the truth of "Not-B implies not-A", and conversely. It is very closely related to the rule of inference modus tollens. It is the rule that where "" is a metalogical symbol representing "can be replaced in a proof with".
Stoic logic
Stoic logic is the system of propositional logic developed by the Stoic philosophers in ancient Greece. It was one of the two great systems of logic in the classical world. It was largely built and shaped by Chrysippus, the third head of the Stoic school in the 3rd-century BCE. Chrysippus's logic differed from Aristotle's term logic because it was based on the analysis of propositions rather than terms. The smallest unit in Stoic logic is an assertible (the Stoic equivalent of a proposition) which is the content of a statement such as "it is day".
Syllogism
A syllogism (συλλογισμός, syllogismos, 'conclusion, inference') is a kind of logical argument that applies deductive reasoning to arrive at a conclusion based on two propositions that are asserted or assumed to be true. In its earliest form (defined by Aristotle in his 350 BC book Prior Analytics), a syllogism arises when two true premises (propositions or statements) validly imply a conclusion, or the main point that the argument aims to get across.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.