Lustre is a type of parallel , generally used for large-scale cluster computing. The name Lustre is a portmanteau word derived from Linux and cluster. Lustre file system software is available under the GNU General Public License (version 2 only) and provides high performance file systems for computer clusters ranging in size from small workgroup clusters to large-scale, multi-site systems. Since June 2005, Lustre has consistently been used by at least half of the top ten, and more than 60 of the top 100 fastest supercomputers in the world, including the world's No. 1 ranked TOP500 supercomputer in November 2022, Frontier, as well as previous top supercomputers such as Fugaku, Titan and Sequoia. Lustre file systems are scalable and can be part of multiple computer clusters with tens of thousands of client nodes, hundreds of petabytes (PB) of storage on hundreds of servers, and tens of terabytes per second (TB/s) of aggregate I/O throughput. This makes Lustre file systems a popular choice for businesses with large data centers, including those in industries such as meteorology, simulation, artificial intelligence and machine learning, oil and gas, life science, rich media, and finance. The I/O performance of Lustre has widespread impact on these applications and has attracted broad attention. The Lustre file system architecture was started as a research project in 1999 by Peter J. Braam, who was a staff of Carnegie Mellon University (CMU) at the time. Braam went on to found his own company Cluster File Systems in 2001, starting from work on the in the at CMU. Lustre was developed under the Accelerated Strategic Computing Initiative Path Forward project funded by the United States Department of Energy, which included Hewlett-Packard and Intel. In September 2007, Sun Microsystems acquired the assets of Cluster File Systems Inc. including its ”intellectual property“. Sun included Lustre with its high-performance computing hardware offerings, with the intent to bring Lustre technologies to Sun's ZFS and the Solaris operating system.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (1)
COM-490: Large-scale data science for real-world data
This hands-on course teaches the tools & methods used by data scientists, from researching solutions to scaling up prototypes to Spark clusters. It exposes the students to the entire data science pipe
Related publications (10)

uKharon: A Membership Service for Microsecond Applications

Rachid Guerraoui, Antoine Murat, Javier Picorel Obando, Athanasios Xygkis

Modern data center fabrics open the possibility of microsecond distributed applications, such as data stores and message queues. A challenging aspect of their development is to ensure that, besides being fast in the common case, these applications react fa ...
USENIX Association2023

The RECIPE approach to challenges in deeply heterogeneous high performance systems

David Atienza Alonso, Marina Zapater Sancho

RECIPE (REliable power and time-ConstraInts-aware Predictive management of heterogeneous Exascale systems) is a recently started project funded within the H2020 FETHPC programme, which is expressly targeted at exploring new High-Performance Computing (HPC) ...
ELSEVIER2020
Show more
Related concepts (9)
Exascale computing
Exascale computing refers to computing systems capable of calculating at least "1018 IEEE 754 Double Precision (64-bit) operations (multiplications and/or additions) per second (exaFLOPS)"; it is a measure of supercomputer performance. Exascale computing is a significant achievement in computer engineering: primarily, it allows improved scientific applications and better prediction accuracy in domains such as weather forecasting, climate modeling and personalised medicine.
ZFS
ZFS (previously: Zettabyte File System) is a with volume management capabilities. It began as part of the Sun Microsystems Solaris operating system in 2001. Large parts of Solaris – including ZFS – were published under an open source license as OpenSolaris for around 5 years from 2005, before being placed under a closed source license when Oracle Corporation acquired Sun in 20092010. During 2005 to 2010, the open source version of ZFS was ported to Linux, Mac OS X (continued as MacZFS) and FreeBSD.
TOP500
The TOP500 project ranks and details the 500 most powerful non-distributed computer systems in the world. The project was started in 1993 and publishes an updated list of the supercomputers twice a year. The first of these updates always coincides with the International Supercomputing Conference in June, and the second is presented at the ACM/IEEE Supercomputing Conference in November.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.