ApproximationAn approximation is anything that is intentionally similar but not exactly equal to something else. The word approximation is derived from Latin approximatus, from proximus meaning very near and the prefix ad- (ad- before p becomes ap- by assimilation) meaning to. Words like approximate, approximately and approximation are used especially in technical or scientific contexts. In everyday English, words such as roughly or around are used with a similar meaning. It is often found abbreviated as approx.
Log semiringIn mathematics, in the field of tropical analysis, the log semiring is the semiring structure on the logarithmic scale, obtained by considering the extended real numbers as logarithms. That is, the operations of addition and multiplication are defined by conjugation: exponentiate the real numbers, obtaining a positive (or zero) number, add or multiply these numbers with the ordinary algebraic operations on real numbers, and then take the logarithm to reverse the initial exponentiation. Such operations are also known as, e.
William OughtredWilliam Oughtred (5 March 1574 – 30 June 1660), also Owtred, Uhtred, etc., was an English mathematician and Anglican clergyman. After John Napier invented logarithms and Edmund Gunter created the logarithmic scales (lines, or rules) upon which slide rules are based, Oughtred was the first to use two such scales sliding by one another to perform direct multiplication and division. He is credited with inventing the slide rule in about 1622. He also introduced the "×" symbol for multiplication and the abbreviations "sin" and "cos" for the sine and cosine functions.
Double exponential functionA double exponential function is a constant raised to the power of an exponential function. The general formula is (where a>1 and b>1), which grows much more quickly than an exponential function. For example, if a = b = 10: f(x) = 1010x f(0) = 10 f(1) = 1010 f(2) = 10100 = googol f(3) = 101000 f(100) = 1010100 = googolplex. Factorials grow faster than exponential functions, but much more slowly than doubly exponential functions. However, tetration and the Ackermann function grow faster.
Logarithmic integral functionIn mathematics, the logarithmic integral function or integral logarithm li(x) is a special function. It is relevant in problems of physics and has number theoretic significance. In particular, according to the prime number theorem, it is a very good approximation to the prime-counting function, which is defined as the number of prime numbers less than or equal to a given value . The logarithmic integral has an integral representation defined for all positive real numbers x ≠ 1 by the definite integral Here, ln denotes the natural logarithm.
Decade (log scale)One decade (symbol dec) is a unit for measuring ratios on a logarithmic scale, with one decade corresponding to a ratio of 10 between two numbers. Scientific notation When a real number like .007 is denoted alternatively by 7.0 × 10—3 then it is said that the number is represented in scientific notation. More generally, to write a number in the form a × 10b, where 1 < a < 10 and b is an integer, is to express it in scientific notation, and a is called the significand or the mantissa, and b is its exponent.
Guillaume de l'HôpitalGuillaume François Antoine, Marquis de l'Hôpital (ɡijom fʁɑ̃swa ɑ̃twan maʁki də lopital; sometimes spelled L'Hospital; 1661 – 2 February 1704), also known as Guillaume-François-Antoine Marquis de l'Hôpital, Marquis de Sainte-Mesme, Comte d'Entremont, and Seigneur d'Ouques-la-Chaise, was a French mathematician. His name is firmly associated with l'Hôpital's rule for calculating limits involving indeterminate forms 0/0 and ∞/∞.
List of logarithmic identitiesIn mathematics, many logarithmic identities exist. The following is a compilation of the notable of these, many of which are used for computational purposes. {| cellpadding=3 | || because || |- | || because || |} By definition, we know that: where or . Setting , we can see that: So, substituting these values into the formula, we see that: which gets us the first property. Setting , we can see that: So, substituting these values into the formula, we see that: which gets us the second property.
ProsthaphaeresisProsthaphaeresis (from the Greek προσθαφαίρεσις) was an algorithm used in the late 16th century and early 17th century for approximate multiplication and division using formulas from trigonometry. For the 25 years preceding the invention of the logarithm in 1614, it was the only known generally applicable way of approximating products quickly. Its name comes from the Greek prosthesis (πρόσθεσις) and aphaeresis (ἀφαίρεσις), meaning addition and subtraction, two steps in the process.
Argument of a functionIn mathematics, an argument of a function is a value provided to obtain the function's result. It is also called an independent variable. For example, the binary function has two arguments, and , in an ordered pair . The hypergeometric function is an example of a four-argument function. The number of arguments that a function takes is called the arity of the function. A function that takes a single argument as input, such as , is called a unary function.