Concepts associés (82)
Approximation
Une approximation est une représentation imprécise ayant toutefois un lien étroit avec la quantité ou l’objet qu’elle reflète : approximation d’un nombre (de π par 3,14, de la vitesse instantanée d’un véhicule par sa vitesse moyenne entre deux points), d’une fonction mathématique, d’une solution d’un problème d’optimisation, d’une forme géométrique, d’une loi physique. Lorsqu’une partie de l’information nécessaire fait défaut, une approximation peut se substituer à une représentation exacte.
Log semiring
In mathematics, in the field of tropical analysis, the log semiring is the semiring structure on the logarithmic scale, obtained by considering the extended real numbers as logarithms. That is, the operations of addition and multiplication are defined by conjugation: exponentiate the real numbers, obtaining a positive (or zero) number, add or multiply these numbers with the ordinary algebraic operations on real numbers, and then take the logarithm to reverse the initial exponentiation. Such operations are also known as, e.
William Oughtred
William Oughtred est un mathématicien et théologien né à Eton (Buckinghamshire) le , et mort à Albury, près de Gulford (comté de Surrey), le . Élève du King's College, Cambridge, Il a étudié la théologie et cles sciences exactes. Il quitte l'université vers 1603 et fut nommé en 1610 ministre d’Albury. Il a enseigné les mathématiques. On compte parmi ses élèves Richard Delamain, Robert Wood et Jonas Moore. Par ailleurs, il fut en correspondance avec John Wallis et Christopher Wren.
Fonction exponentielle double
Une fonction exponentielle double est une fonction exponentielle dont l’exposant est lui-même une fonction exponentielle. La forme générale est : Cette fonction croît plus vite qu’une exponentielle simple. Par exemple, pour a = b = 10 : f(−1) ≈ ; f(0) = 10 ; f(1) = 1010 ; f(2) = 10100 = googol ; f(3) = 101000 ; f(100) = 1010100 = googolplex. Les factorielles croissent plus vite que les exponentielles, mais beaucoup plus lentement que les exponentielles doubles. La fonction hyper-exponentielle et la fonction d'Ackermann croissent encore plus vite.
Logarithme intégral
En mathématiques, le logarithme intégral li est une fonction spéciale définie en tout nombre réel strictement positif x ≠ 1 par l'intégrale : où ln désigne le logarithme népérien. La fonction n'est pas définie en t = 1, et l'intégrale pour x > 1 doit être interprétée comme la valeur principale de Cauchy : Quand x tend vers +∞, on a l'équivalence c'est-à-dire que D'après le théorème des nombres premiers, la fonction de compte des nombres premiers π(x) est équivalente à x/ln(x), donc à li(x), qui en fournit par ailleurs une meilleure approximation.
Décade (physique)
Une décade est un facteur de 10 entre deux nombres. C'est un concept important dans les représentations graphiques de type logarithmiques, en particulier pour les fréquences, par exemple lorsque nous décrivons la réponse en fréquence d'un système électronique, tels qu'un amplificateur audio ou un filtre électronique. En physique, la signification est légèrement différente : elle représente l'intervalle compris entre 10D inclus et 10D+1 exclus, où D est un nombre réel quelconque.
Guillaume François Antoine, marquis de L'Hôpital
Guillaume François Antoine de L'Hôpital (1661-1704), parfois orthographié de L'Hospital, marquis, est un mathématicien français. Il est connu pour la règle qui porte son nom : la règle de L'Hôpital, qui permet de calculer la valeur d'une limite pour une fraction où le numérateur et le dénominateur tendent tous deux vers zéro. Il est aussi l'auteur du premier livre en français sur le calcul différentiel : Analyse des infiniment petits pour l'intelligence des lignes courbes.
Identités logarithmiques
Cet article dresse une liste d'identités utiles lorsqu'on travaille avec les logarithmes. Ces identités sont toutes valables à condition que les réels utilisés (, , et ) soient strictement positifs. En outre, les bases des logarithmes doivent être différentes de 1. Pour toute base , on a : Par définition des logarithmes, on a : Ces trois identités permettent d'utiliser des tables de logarithme et des règles à calcul ; connaissant le logarithme de deux nombres, il est possible de les multiplier et diviser rapidement, ou aussi bien calculer des puissances ou des racines de ceux-ci.
Prostaphérèse
La prostaphérèse est un algorithme que l'on utilisait à la fin du pour effectuer rapidement quoique approximativement les multiplications ou les divisions de nombres ayant beaucoup de chiffres. Cette technique, utilisant des formules de trigonométrie, était en vogue chez les scientifiques durant le quart de siècle qui a précédé l'invention des logarithmes en 1614. Son nom vient de la contraction de deux mots grecs : (« addition ») et (« soustraction »), le principe du procédé étant d'effectuer des additions et soustractions à la place de la (grosse) multiplication ou division.
Argument of a function
In mathematics, an argument of a function is a value provided to obtain the function's result. It is also called an independent variable. For example, the binary function has two arguments, and , in an ordered pair . The hypergeometric function is an example of a four-argument function. The number of arguments that a function takes is called the arity of the function. A function that takes a single argument as input, such as , is called a unary function.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.