A saturated compound is a chemical compound (or ion) that resists addition reactions, such as hydrogenation, oxidative addition, and binding of a Lewis base. The term is used in many contexts and for many classes of chemical compounds. Overall, saturated compounds are less reactive than unsaturated compounds. Saturation is derived from the Latin word saturare, meaning 'to fill'.
Unsaturated compounds generally carry out typical addition reactions that are not possible with saturated compounds such as alkanes. A saturated organic compound has only single bonds between carbon atoms. An important class of saturated compounds are the alkanes. Many saturated compounds have functional groups, e.g., alcohols.
The concept of saturation can be described using various naming systems, formulas, and analytical tests. For instance, IUPAC nomenclature is a system of naming conventions used to describe the type and location of unsaturation within organic compounds. The "degree of unsaturation" is a formula used to summarize and diagram the amount of hydrogen that a compound can bind. Unsaturation can be determined by NMR, mass spectrometry and IR spectroscopy, or by determining a compound's bromine number or iodine number.
Unsaturated fat
The terms saturated vs unsaturated are often applied to the fatty acid constituents of fats. The triglycerides (fats) that comprise tallow are derived from the saturated stearic and monounsaturated oleic acids. Many vegetable oils contain fatty acids with one (monounsaturated) or more (polyunsaturated) double bonds in them.
In organometallic chemistry, a coordinatively unsaturated complex has fewer than 18 valence electrons and thus is susceptible to oxidative addition or coordination of an additional ligand. Unsaturation is characteristic of many catalysts. The opposite of coordinatively unsaturated is coordinatively saturated. Complexes that are coordinatively saturated rarely exhibit catalytic properties.
In physical chemistry, when referring to surface processes, saturation denotes the degree at which a binding site is fully occupied.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course is an introduction to linear and discrete optimization.Warning: This is a mathematics course! While much of the course will be algorithmic in nature, you will still need to be able to p
Le cours est une introduction aux Sciences du sol. Il a pour but de présenter les principales caractéristiques, propriétés et fonctions des sols. Il fait appel à des notions théoriques mais également
Acquisition des notions fondamentales liées à la réactivité des molécules organiques, identification de la structure de petites molécules organiques au moyen des techniques de spectrométrie de masse,
In chemistry, the iodine value (IV; also iodine absorption value, iodine number or iodine index) is the mass of iodine in grams that is consumed by 100 grams of a chemical substance. Iodine numbers are often used to determine the degree of unsaturation in fats, oils and waxes. In fatty acids, unsaturation occurs mainly as double bonds which are very reactive towards halogens, the iodine in this case. Thus, the higher the iodine value, the more unsaturations are present in the fat.
Oxidative addition and reductive elimination are two important and related classes of reactions in organometallic chemistry. Oxidative addition is a process that increases both the oxidation state and coordination number of a metal centre. Oxidative addition is often a step in catalytic cycles, in conjunction with its reverse reaction, reductive elimination. For transition metals, oxidative reaction results in the decrease in the dn to a configuration with fewer electrons, often 2e fewer.
In chemistry, dissociative substitution describes a reaction pathway by which compounds interchange ligands. The term is typically applied to coordination and organometallic complexes, but resembles the SN1 mechanism in organic chemistry. This pathway can be well described by the cis effect, or the labilization of CO ligands in the cis position. The opposite pathway is associative substitution, being analogous to SN2 pathway. Pathways that are intermediate between the pure dissociative and pure associative pathways are called interchange mechanisms.
Covers membrane fluidity, lipid composition impact, protein functions, and molecule mobility study.
Covers the basic principles of retrosynthesis and aromatic compounds in organic synthesis.
Explores the propagation of uncertainty in correlated variables and extreme correlations, Tchebychev inequality, confidence intervals, and Taylor series development.
Local gyrokinetic simulations are used to model turbulent transport for the first time in a representative high-performance plasma discharge projected for the new JT-60SA tokamak. The discharge features a double-null separatrix, 41 MW of combined neutral b ...
Bristol2024
,
Copper-catalyzed cycloalkane oxidation using H2O2 as an oxidant was investigated under mild conditions. The copper catalysts studied in this work ranged from commercially-available copper(II) salts to copper(II) complexes containing polypyridyl ligands. Va ...