In chemistry, the iodine value (IV; also iodine absorption value, iodine number or iodine index) is the mass of iodine in grams that is consumed by 100 grams of a chemical substance. Iodine numbers are often used to determine the degree of unsaturation in fats, oils and waxes. In fatty acids, unsaturation occurs mainly as double bonds which are very reactive towards halogens, the iodine in this case. Thus, the higher the iodine value, the more unsaturations are present in the fat. It can be seen from the table that coconut oil is very saturated, which means it is good for making soap. On the other hand, linseed oil is highly unsaturated, which makes it a drying oil, well suited for making oil paints.
The determination of iodine value is a particular example of iodometry. A solution of iodine is yellow/brown in color. When this is added to a solution to be tested, however, any chemical group (usually in this test double bonds) that react with iodine effectively reduce the strength, or magnitude of the color (by taking out of solution). Thus the amount of iodine required to make a solution retain the characteristic yellow/brown color can effectively be used to determine the amount of iodine sensitive groups present in the solution.
The chemical reaction associated with this method of analysis involves formation of the diiodo alkane (R and R' symbolize alkyl or other organic groups):
R-CH=CH-R' + I2 -> R-CH(I)-CH(I)-R'
The precursor alkene () is colorless and so is the organoiodine product ().
In a typical procedure, the fatty acid is treated with an excess of the Hanuš or Wijs solution, which are, respectively, solutions of iodine monobromide (IBr) and iodine monochloride (ICl) in glacial acetic acid. Unreacted iodine monobromide (or monochloride) is then allowed to react with potassium iodide, converting it to iodine , whose concentration can be determined by back-titration with sodium thiosulfate () standard solution.
The basic principle of iodine value was originally introduced in 1884 by A. V. Hübl as “Jodzahl”.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
A saturated compound is a chemical compound (or ion) that resists addition reactions, such as hydrogenation, oxidative addition, and binding of a Lewis base. The term is used in many contexts and for many classes of chemical compounds. Overall, saturated compounds are less reactive than unsaturated compounds. Saturation is derived from the Latin word saturare, meaning 'to fill'. Unsaturated compounds generally carry out typical addition reactions that are not possible with saturated compounds such as alkanes.
An oil is any nonpolar chemical substance that is composed primarily of hydrocarbons and is hydrophobic (does not mix with water) & lipophilic (mixes with other oils). Oils are usually flammable and surface active. Most oils are unsaturated lipids that are liquid at room temperature. The general definition of oil includes classes of chemical compounds that may be otherwise unrelated in structure, properties, and uses. Oils may be animal, vegetable, or petrochemical in origin, and may be volatile or non-volatile.
Lard is a semi-solid white fat product obtained by rendering the fatty tissue of a pig. It is distinguished from tallow, a similar product derived from fat of cattle or sheep. Lard can be rendered by steaming, boiling, or dry heat. The culinary qualities of lard vary somewhat depending on the origin and processing method; if properly rendered, it may be nearly odorless and tasteless. It has a high saturated fatty acid content and no trans fat. At retail, refined lard is usually sold as paper-wrapped blocks.
Electrochemical reduction of CO(2) to value-added chemicals and fuels is a promising strategy to sustain pressing renewable energy demands and to address climate change issues. Direct observation of reaction intermediates during the CO(2) reduction reactio ...
NATL ACAD SCIENCES2022
, , , ,
Bone marrow adipocytes (BMAds) constitute the most abundant stromal component of adult human bone marrow. Two subtypes of BMAds have been described, the more labile regulated adipocytes (rBMAds) and the more stable constitutive adipocytes (cBMAds), which d ...
FRONTIERS MEDIA SA2022
,
The kinetics for the reactions of hypoiodous acid (HOI) with various phenols (phenol, 4-nitrophenol, 4-hydroxybenzoic acid), 3-oxopentanedioic acid (3-OPA) and flavone were investigated in the pH range of 6.0-11.0. The apparent second order rate constants ...