A voting system is consistent if, whenever the electorate is divided (arbitrarily) into several parts and elections in those parts garner the same result, then an election of the entire electorate also garners that result. Smith calls this property separability and Woodall calls it convexity.
It has been proven a ranked voting system is "consistent if and only if it is a scoring function", i.e. a positional voting system. Borda count is an example of this.
The failure of the consistency criterion can be seen as an example of Simpson's paradox.
As shown below under Kemeny-Young, passing or failing the consistency criterion can depend on whether the election selects a single winner or a full ranking of the candidates (sometimes referred to as ranking consistency); in fact, the specific examples below rely on finding single winner inconsistency by choosing two different rankings with the same overall winner, which means they do not apply to ranking consistency.
Copeland's method
This example shows that Copeland's method violates the consistency criterion. Assume five candidates A, B, C, D and E with 27 voters with the following preferences:
Now, the set of all voters is divided into two groups at the bold line. The voters over the line are the first group of voters; the others are the second group of voters.
In the following the Copeland winner for the first group of voters is determined.
The results would be tabulated as follows:
[X] indicates voters who preferred the candidate listed in the column caption to the candidate listed in the row caption
[Y] indicates voters who preferred the candidate listed in the row caption to the candidate listed in the column caption
Result: With the votes of the first group of voters, A can defeat three of the four opponents, whereas no other candidate wins against more than two opponents. Thus, A is elected Copeland winner by the first group of voters.
Now, the Copeland winner for the second group of voters is determined.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The Borda count is a family of positional voting rules which gives each candidate, for each ballot, a number of points corresponding to the number of candidates ranked lower. In the original variant, the lowest-ranked candidate gets 0 points, the next-lowest gets 1 point, etc., and the highest-ranked candidate gets n − 1 points, where n is the number of candidates. Once all votes have been counted, the option or candidate with the most points is the winner.
Positional voting is a ranked voting electoral system in which the options or candidates receive points based on their rank position on each ballot and the one with the most points overall wins. The lower-ranked preference in any adjacent pair is generally of less value than the higher-ranked one. Although it may sometimes be weighted the same, it is never worth more. A valid progression of points or weightings may be chosen at will (Eurovision Song Contest) or it may form a mathematical sequence such as an arithmetic progression (Borda count), a geometric one (positional number system) or a harmonic one (Nauru/Dowdall method).
The term ranked voting, also known as preferential voting or ranked choice voting, pertains to any voting system where voters use a rank to order candidates or options—in a sequence from first, second, third, and onwards—on their ballots. Ranked voting systems vary based on the ballot marking process, how preferences are tabulated and counted, the number of seats available for election, and whether voters are allowed to rank candidates equally.
Discusses election methods' desirable properties, multi-winner methods, district representation, gerrymandering, and the tyranny of the majority.
Explores the evolution from attention mechanisms to transformers in modern NLP, emphasizing the significance of self-attention and cross-attention.
We study the issue of data consistency in distributed systems. Specifically, we consider a distributed system that replicates its data at multiple sites, which is prone to partitions, and which is assumed to be available (in the sense that queries are alwa ...
We study the phenomenon of intransitivity in models of dice and voting. First, we follow a recent thread of research for n-sided dice with pairwise ordering induced by the probability, relative to 1/2, that a throw from one die is higher than the other. We ...
Voting can abstractly model any decision-making scenario and as such it has been extensively studied over the decades. Recently, the related literature has focused on quantifying the impact of utilizing only limited information in the voting process on the ...