Virasoro algebraIn mathematics, the Virasoro algebra (named after the physicist Miguel Ángel Virasoro) is a complex Lie algebra and the unique central extension of the Witt algebra. It is widely used in two-dimensional conformal field theory and in string theory. The Virasoro algebra is spanned by generators Ln for n ∈ Z and the central charge c. These generators satisfy and The factor of is merely a matter of convention. For a derivation of the algebra as the unique central extension of the Witt algebra, see derivation of the Virasoro algebra.
Closed-subgroup theoremIn mathematics, the closed-subgroup theorem (sometimes referred to as Cartan's theorem) is a theorem in the theory of Lie groups. It states that if H is a closed subgroup of a Lie group G, then H is an embedded Lie group with the smooth structure (and hence the group topology) agreeing with the embedding. One of several results known as Cartan's theorem, it was first published in 1930 by Élie Cartan, who was inspired by John von Neumann's 1929 proof of a special case for groups of linear transformations.
SubmanifoldIn mathematics, a submanifold of a manifold M is a subset S which itself has the structure of a manifold, and for which the inclusion map S → M satisfies certain properties. There are different types of submanifolds depending on exactly which properties are required. Different authors often have different definitions. In the following we assume all manifolds are differentiable manifolds of class Cr for a fixed r ≥ 1, and all morphisms are differentiable of class Cr.
Killing formIn mathematics, the Killing form, named after Wilhelm Killing, is a symmetric bilinear form that plays a basic role in the theories of Lie groups and Lie algebras. Cartan's criteria (criterion of solvability and criterion of semisimplicity) show that Killing form has a close relationship to the semisimplicity of the Lie algebras. The Killing form was essentially introduced into Lie algebra theory by in his thesis.
Chevalley basisIn mathematics, a Chevalley basis for a simple complex Lie algebra is a basis constructed by Claude Chevalley with the property that all structure constants are integers. Chevalley used these bases to construct analogues of Lie groups over finite fields, called Chevalley groups. The Chevalley basis is the Cartan-Weyl basis, but with a different normalization. The generators of a Lie group are split into the generators H and E indexed by simple roots and their negatives .