The Pearson distribution is a family of continuous probability distributions. It was first published by Karl Pearson in 1895 and subsequently extended by him in 1901 and 1916 in a series of articles on biostatistics.
The Pearson system was originally devised in an effort to model visibly skewed observations. It was well known at the time how to adjust a theoretical model to fit the first two cumulants or moments of observed data: Any probability distribution can be extended straightforwardly to form a location-scale family. Except in pathological cases, a location-scale family can be made to fit the observed mean (first cumulant) and variance (second cumulant) arbitrarily well. However, it was not known how to construct probability distributions in which the skewness (standardized third cumulant) and kurtosis (standardized fourth cumulant) could be adjusted equally freely. This need became apparent when trying to fit known theoretical models to observed data that exhibited skewness. Pearson's examples include survival data, which are usually asymmetric.
In his original paper, Pearson (1895, p. 360) identified four types of distributions (numbered I through IV) in addition to the normal distribution (which was originally known as type V). The classification depended on whether the distributions were supported on a bounded interval, on a half-line, or on the whole real line; and whether they were potentially skewed or necessarily symmetric. A second paper (Pearson 1901) fixed two omissions: it redefined the type V distribution (originally just the normal distribution, but now the inverse-gamma distribution) and introduced the type VI distribution. Together the first two papers cover the five main types of the Pearson system (I, III, IV, V, and VI). In a third paper, Pearson (1916) introduced further special cases and subtypes (VII through XII).
Rhind (1909, pp. 430–432) devised a simple way of visualizing the parameter space of the Pearson system, which was subsequently adopted by Pearson (1916, plate 1 and pp. 430ff.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
"Hydrology for Engineers" is an introduction to the study of floods, droughts and a fair distribution of water. The course will introduce basic hydrologic concepts and methods: probability and statist
This course is an introduction to quantitative risk management that covers standard statistical methods, multivariate risk factor models, non-linear dependence structures (copula models), as well as p
In probability theory and statistics, the inverse gamma distribution is a two-parameter family of continuous probability distributions on the positive real line, which is the distribution of the reciprocal of a variable distributed according to the gamma distribution. Perhaps the chief use of the inverse gamma distribution is in Bayesian statistics, where the distribution arises as the marginal posterior distribution for the unknown variance of a normal distribution, if an uninformative prior is used, and as an analytically tractable conjugate prior, if an informative prior is required.
In probability theory and statistics, a shape parameter (also known as form parameter) is a kind of numerical parameter of a parametric family of probability distributions that is neither a location parameter nor a scale parameter (nor a function of these, such as a rate parameter). Such a parameter must affect the shape of a distribution rather than simply shifting it (as a location parameter does) or stretching/shrinking it (as a scale parameter does). For example, "peakedness" refers to how round the main peak is.
In probability theory and statistics, the F-distribution or F-ratio, also known as Snedecor's F distribution or the Fisher–Snedecor distribution (after Ronald Fisher and George W. Snedecor), is a continuous probability distribution that arises frequently as the null distribution of a test statistic, most notably in the analysis of variance (ANOVA) and other F-tests. The F-distribution with d1 and d2 degrees of freedom is the distribution of where and are independent random variables with chi-square distributions with respective degrees of freedom and .
In this paper we consider two aspects of the inverse problem of how to construct merge trees realizing a given barcode. Much of our investigation exploits a recently discovered connection between the symmetric group and barcodes in general position, based ...
2024
, , , ,
Time reversal exploits the invariance of electromagnetic wave propagation in reciprocal and lossless media to localize radiating sources. Time-reversed measurements are back-propagated in a simulated domain and converge to the unknown source location. The ...
Distributed learning is the key for enabling training of modern large-scale machine learning models, through parallelising the learning process. Collaborative learning is essential for learning from privacy-sensitive data that is distributed across various ...