F-spaceIn functional analysis, an F-space is a vector space over the real or complex numbers together with a metric such that Scalar multiplication in is continuous with respect to and the standard metric on or Addition in is continuous with respect to The metric is translation-invariant; that is, for all The metric space is complete. The operation is called an F-norm, although in general an F-norm is not required to be homogeneous. By translation-invariance, the metric is recoverable from the F-norm.
Distinguished spaceIn functional analysis and related areas of mathematics, distinguished spaces are topological vector spaces (TVSs) having the property that weak-* bounded subsets of their biduals (that is, the strong dual space of their strong dual space) are contained in the weak-* closure of some bounded subset of the bidual. Suppose that is a locally convex space and let and denote the strong dual of (that is, the continuous dual space of endowed with the strong dual topology).
Absolutely convex setIn mathematics, a subset C of a real or complex vector space is said to be absolutely convex or disked if it is convex and balanced (some people use the term "circled" instead of "balanced"), in which case it is called a disk. The disked hull or the absolute convex hull of a set is the intersection of all disks containing that set. A subset of a real or complex vector space is called a and is said to be , , and if any of the following equivalent conditions is satisfied: is a convex and balanced set.
LF-spaceIn mathematics, an LF-space, also written (LF)-space, is a topological vector space (TVS) X that is a locally convex inductive limit of a countable inductive system of Fréchet spaces. This means that X is a direct limit of a direct system in the category of locally convex topological vector spaces and each is a Fréchet space. The name LF stands for Limit of Fréchet spaces. If each of the bonding maps is an embedding of TVSs then the LF-space is called a strict LF-space.
Infrabarrelled spaceIn functional analysis, a discipline within mathematics, a locally convex topological vector space (TVS) is said to be infrabarrelled (also spelled infrabarreled) if every bounded barrel is a neighborhood of the origin. If is a Hausdorff locally convex space then the canonical injection from into its bidual is a topological embedding if and only if is infrabarrelled. Every quasi-complete infrabarrelled space is barrelled. Every barrelled space is infrabarrelled.
Spaces of test functions and distributionsIn mathematical analysis, the spaces of test functions and distributions are topological vector spaces (TVSs) that are used in the definition and application of distributions. Test functions are usually infinitely differentiable complex-valued (or sometimes real-valued) functions on a non-empty open subset that have compact support. The space of all test functions, denoted by is endowed with a certain topology, called the , that makes into a complete Hausdorff locally convex TVS.