Logical graphA logical graph is a special type of diagrammatic structure of graphical syntax developed for logic (such as those developed by Charles Sanders Peirce). In his papers on qualitative logic, entitative graphs, and existential graphs, Peirce developed several versions of a graphical formalism, or a graph-theoretic formal language, designed to be interpreted for logic. In the century since Peirce initiated this line of development, a variety of formal graph-theoretic structures that have branched out from what is abstractly the same formal base.
MetatheoremIn logic, a metatheorem is a statement about a formal system proven in a metalanguage. Unlike theorems proved within a given formal system, a metatheorem is proved within a metatheory, and may reference concepts that are present in the metatheory but not the object theory. A formal system is determined by a formal language and a deductive system (axioms and rules of inference). The formal system can be used to prove particular sentences of the formal language with that system.
Substitution (logic)A substitution is a syntactic transformation on formal expressions. To apply a substitution to an expression means to consistently replace its variable, or placeholder, symbols with other expressions. The resulting expression is called a substitution instance, or instance for short, of the original expression. Where ψ and φ represent formulas of propositional logic, ψ is a substitution instance of φ if and only if ψ may be obtained from φ by substituting formulas for symbols in φ, replacing each occurrence of the same symbol by an occurrence of the same formula.
Laws of FormLaws of Form (hereinafter LoF) is a book by G. Spencer-Brown, published in 1969, that straddles the boundary between mathematics and philosophy. LoF describes three distinct logical systems: The "primary arithmetic" (described in Chapter 4 of LoF), whose models include Boolean arithmetic; The "primary algebra" (Chapter 6 of LoF), whose models include the two-element Boolean algebra (hereinafter abbreviated 2), Boolean logic, and the classical propositional calculus; "Equations of the second degree" (Chapter 11), whose interpretations include finite automata and Alonzo Church's Restricted Recursive Arithmetic (RRA).
Algebraic semantics (mathematical logic)In mathematical logic, algebraic semantics is a formal semantics based on algebras studied as part of algebraic logic. For example, the modal logic S4 is characterized by the class of topological boolean algebras—that is, boolean algebras with an interior operator. Other modal logics are characterized by various other algebras with operators. The class of boolean algebras characterizes classical propositional logic, and the class of Heyting algebras propositional intuitionistic logic.
Material implication (rule of inference)In propositional logic, material implication is a valid rule of replacement that allows for a conditional statement to be replaced by a disjunction in which the antecedent is negated. The rule states that P implies Q is logically equivalent to not- or and that either form can replace the other in logical proofs. In other words, if is true, then must also be true, while if is true, then cannot be true either; additionally, when is not true, may be either true or false.
Turnstile (symbol)In mathematical logic and computer science the symbol ⊢ () has taken the name turnstile because of its resemblance to a typical turnstile if viewed from above. It is also referred to as tee and is often read as "yields", "proves", "satisfies" or "entails". The turnstile represents a binary relation. It has several different interpretations in different contexts: In epistemology, Per Martin-Löf (1996) analyzes the symbol thus: "...[T]he combination of Frege's Urteilsstrich, judgement stroke [ | ], and Inhaltsstrich, content stroke [—], came to be called the assertion sign.