Concept

Grothendieck's relative point of view

Grothendieck's relative point of view is a heuristic applied in certain abstract mathematical situations, with a rough meaning of taking for consideration families of 'objects' explicitly depending on parameters, as the basic field of study, rather than a single such object. It is named after Alexander Grothendieck, who made extensive use of it in treating foundational aspects of algebraic geometry. Outside that field, it has been influential particularly on and categorical logic. In the usual formulation, the point of view treats, not X of a given category C, but morphisms f: X → S where S is a fixed object. This idea is made formal in the idea of the of objects of C 'above' S. To move from one slice to another requires a base change; from a technical point of view base change becomes a major issue for the whole approach (see for example Beck–Chevalley conditions). A base change 'along' a given morphism g: T → S is typically given by the fiber product, producing an object over T from one over S. The 'fiber' terminology is significant: the underlying heuristic is that X over S is a family of fibers, one for each 'point' of S; the fiber product is then the family on T, which described by fibers is for each point of T the fiber at its image in S. This set-theoretic language is too naïve to fit the required context, certainly, from algebraic geometry. It combines, though, with the use of the Yoneda lemma to replace the 'point' idea with that of treating an object, such as S, as 'as good as' the representable functor it sets up. The Grothendieck–Riemann–Roch theorem from about 1956 is usually cited as the key moment for the introduction of this circle of ideas. The more classical types of Riemann–Roch theorem are recovered in the case where S is a single point (i.e. the final object in the working category C). Using other S is a way to have versions of theorems 'with parameters', i.e. allowing for continuous variation, for which the 'frozen' version reduces the parameters to constants.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.