In mathematics, a scheme is a mathematical structure that enlarges the notion of algebraic variety in several ways, such as taking account of multiplicities (the equations x = 0 and x2 = 0 define the same algebraic variety but different schemes) and allowing "varieties" defined over any commutative ring (for example, Fermat curves are defined over the integers).
Scheme theory was introduced by Alexander Grothendieck in 1960 in his treatise "Éléments de géométrie algébrique"; one of its aims was developing the formalism needed to solve deep problems of algebraic geometry, such as the Weil conjectures (the last of which was proved by Pierre Deligne). Strongly based on commutative algebra, scheme theory allows a systematic use of methods of topology and homological algebra. Scheme theory also unifies algebraic geometry with much of number theory, which eventually led to Wiles's proof of Fermat's Last Theorem.
Formally, a scheme is a topological space together with commutative rings for all of its open sets, which arises from gluing together spectra (spaces of prime ideals) of commutative rings along their open subsets. In other words, it is a ringed space which is locally a spectrum of a commutative ring.
The relative point of view is that much of algebraic geometry should be developed for a morphism X → Y of schemes (called a scheme X over Y), rather than for an individual scheme. For example, in studying algebraic surfaces, it can be useful to consider families of algebraic surfaces over any scheme Y. In many cases, the family of all varieties of a given type can itself be viewed as a variety or scheme, known as a moduli space.
For some of the detailed definitions in the theory of schemes, see the glossary of scheme theory.
The origins of algebraic geometry mostly lie in the study of polynomial equations over the real numbers. By the 19th century, it became clear (notably in the work of Jean-Victor Poncelet and Bernhard Riemann) that algebraic geometry was simplified by working over the field of complex numbers, which has the advantage of being algebraically closed.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematics, more specifically in ring theory, local rings are certain rings that are comparatively simple, and serve to describe what is called "local behaviour", in the sense of functions defined on varieties or manifolds, or of algebraic number fields examined at a particular place, or prime. Local algebra is the branch of commutative algebra that studies commutative local rings and their modules. In practice, a commutative local ring often arises as the result of the localization of a ring at a prime ideal.
Jean-Pierre Serre (sɛʁ; born 15 September 1926) is a French mathematician who has made contributions to algebraic topology, algebraic geometry and algebraic number theory. He was awarded the Fields Medal in 1954, the Wolf Prize in 2000 and the inaugural Abel Prize in 2003. Born in Bages, Pyrénées-Orientales, to pharmacist parents, Serre was educated at the Lycée de Nîmes and then from 1945 to 1948 at the École Normale Supérieure in Paris. He was awarded his doctorate from the Sorbonne in 1951.
In mathematics, particularly in algebraic geometry, complex analysis and algebraic number theory, an abelian variety is a projective algebraic variety that is also an algebraic group, i.e., has a group law that can be defined by regular functions. Abelian varieties are at the same time among the most studied objects in algebraic geometry and indispensable tools for much research on other topics in algebraic geometry and number theory. An abelian variety can be defined by equations having coefficients in any field; the variety is then said to be defined over that field.
Develop your promising idea into a successful business concept proposal, and launch it! Gain practical experience in the key steps of the venture creation process, including marketing and fundraising.
Develop your promising idea into a successful business concept proposal, and launch it! Gain practical experience in the key steps of the venture creation process, including marketing and fundraising.
The student will learn state-of-the-art algorithms for solving differential equations. The analysis and implementation of these algorithms will be discussed in some detail.
We will study classical and modern deformation theory of schemes and coherent sheaves. Participants should have a solid background in scheme-theory, for example being familiar with the first 3 chapter
The aim of this course is to learn the basics of the modern scheme theoretic language of algebraic geometry.
Commitment is a key primitive which resides at the heart of several cryptographic protocols. Noisy channels can help realize information-theoretically secure commitment schemes; however, their imprecise statistical characterization can severely impair such ...
For the Bargmann-Fock field on R-d with d >= 3, we prove that the critical level l(c) (d) of the percolation model formed by the excursion sets {f >= l} is strictly positive. This implies that for every l sufficiently close to 0 (in particular for the noda ...
This paper presents a first implementation of gradient, divergence, and particle tracing schemes for the EMC3 code, a stochastic 3D plasma fluid code widely employed for edge plasma and impurity transport modeling in tokamaks and stellarators. These scheme ...