Explicit substitutionIn computer science, lambda calculi are said to have explicit substitutions if they pay special attention to the formalization of the process of substitution. This is in contrast to the standard lambda calculus where substitutions are performed by beta reductions in an implicit manner which is not expressed within the calculus; the "freshness" conditions in such implicit calculi are a notorious source of errors. The concept has appeared in a large number of published papers in quite different fields, such as in abstract machines, predicate logic, and symbolic computation.
Pure type systemNOTOC In the branches of mathematical logic known as proof theory and type theory, a pure type system (PTS), previously known as a generalized type system (GTS), is a form of typed lambda calculus that allows an arbitrary number of sorts and dependencies between any of these. The framework can be seen as a generalisation of Barendregt's lambda cube, in the sense that all corners of the cube can be represented as instances of a PTS with just two sorts. In fact, Barendregt (1991) framed his cube in this setting.
MATLABMATLAB (an abbreviation of "MATrix LABoratory") is a proprietary multi-paradigm programming language and numeric computing environment developed by MathWorks. MATLAB allows matrix manipulations, plotting of functions and data, implementation of algorithms, creation of user interfaces, and interfacing with programs written in other languages. Although MATLAB is intended primarily for numeric computing, an optional toolbox uses the MuPAD symbolic engine allowing access to symbolic computing abilities.
Homotopy type theoryIn mathematical logic and computer science, homotopy type theory (HoTT hɒt) refers to various lines of development of intuitionistic type theory, based on the interpretation of types as objects to which the intuition of (abstract) homotopy theory applies. This includes, among other lines of work, the construction of homotopical and models for such type theories; the use of type theory as a logic (or internal language) for abstract homotopy theory and ; the development of mathematics within a type-theoretic foundation (including both previously existing mathematics and new mathematics that homotopical types make possible); and the formalization of each of these in computer proof assistants.
Calculus of constructionsIn mathematical logic and computer science, the calculus of constructions (CoC) is a type theory created by Thierry Coquand. It can serve as both a typed programming language and as constructive foundation for mathematics. For this second reason, the CoC and its variants have been the basis for Coq and other proof assistants. Some of its variants include the calculus of inductive constructions (which adds inductive types), the calculus of (co)inductive constructions (which adds coinduction), and the predicative calculus of inductive constructions (which removes some impredicativity).
Lambda cubeIn mathematical logic and type theory, the λ-cube (also written lambda cube) is a framework introduced by Henk Barendregt to investigate the different dimensions in which the calculus of constructions is a generalization of the simply typed λ-calculus. Each dimension of the cube corresponds to a new kind of dependency between terms and types. Here, "dependency" refers to the capacity of a term or type to bind a term or type. The respective dimensions of the λ-cube correspond to: x-axis (): types that can bind terms, corresponding to dependent types.
Fixed-point combinatorIn mathematics and computer science in general, a fixed point of a function is a value that is mapped to itself by the function. In combinatory logic for computer science, a fixed-point combinator (or fixpoint combinator) is a higher-order function that returns some fixed point of its argument function, if one exists. Formally, if the function f has one or more fixed points, then and hence, by repeated application, In the classical untyped lambda calculus, every function has a fixed point.
ISWIMISWIM (acronym for If you See What I Mean) is an abstract computer programming language (or a family of languages) devised by Peter Landin and first described in his article "The Next 700 Programming Languages", published in the Communications of the ACM in 1966. Although not implemented, it has proved very influential in the development of programming languages, especially functional programming languages such as SASL, Miranda, ML, Haskell and their successors, and dataflow programming languages like Lucid.
Effective methodIn logic, mathematics and computer science, especially metalogic and computability theory, an effective method or effective procedure is a procedure for solving a problem by any intuitively 'effective' means from a specific class. An effective method is sometimes also called a mechanical method or procedure. The definition of an effective method involves more than the method itself. In order for a method to be called effective, it must be considered with respect to a class of problems.
UnlambdaUnlambda is a minimal, "nearly pure" functional programming language invented by David Madore. It is based on combinatory logic, an expression system without the lambda operator or free variables. It relies mainly on two built-in functions (s and k) and an apply operator (written `, the backquote character). These alone make it Turing-complete, but there are also some input/output (I/O) functions to enable interacting with the user, some shortcut functions, and a lazy evaluation function. Variables are unsupported.