In chemistry, specific rotation ([α]) is a property of a chiral chemical compound. It is defined as the change in orientation of monochromatic plane-polarized light, per unit distance–concentration product, as the light passes through a sample of a compound in solution. Compounds which rotate the plane of polarization of a beam of plane polarized light clockwise are said to be dextrorotary, and correspond with positive specific rotation values, while compounds which rotate the plane of polarization of plane polarized light counterclockwise are said to be levorotary, and correspond with negative values. If a compound is able to rotate the plane of polarization of plane-polarized light, it is said to be “optically active”. Specific rotation is an intensive property, distinguishing it from the more general phenomenon of optical rotation. As such, the observed rotation (α) of a sample of a compound can be used to quantify the enantiomeric excess of that compound, provided that the specific rotation ([α]) for the enantiopure compound is known. The variance of specific rotation with wavelength—a phenomenon known as optical rotatory dispersion—can be used to find the absolute configuration of a molecule. The concentration of bulk sugar solutions is sometimes determined by comparison of the observed optical rotation with the known specific rotation. The CRC Handbook of Chemistry and Physics defines specific rotation as: For an optically active substance, defined by [α]θλ = α/γl, where α is the angle through which plane polarized light is rotated by a solution of mass concentration γ and path length l. Here θ is the Celsius temperature and λ the wavelength of the light at which the measurement is carried out. Values for specific rotation are reported in units of deg·mL·g−1·dm−1, which are typically shortened to just degrees, wherein the other components of the unit are tacitly assumed. These values should always be accompanied by information about the temperature, solvent and wavelength of light used, as all of these variables can affect the specific rotation.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (7)
PHYS-100: Advanced physics I (mechanics)
La Physique Générale I (avancée) couvre la mécanique du point et du solide indéformable. Apprendre la mécanique, c'est apprendre à mettre sous forme mathématique un phénomène physique, en modélisant l
ME-104: Introduction to structural mechanics
The student will acquire the basis for the analysis of static structures and deformation of simple structural elements. The focus is given to problem-solving skills in the context of engineering desig
PHYS-101(en): General physics : mechanics (English)
Students will learn the principles of mechanics to enable a better understanding of physical phenomena, such as the kinematics and dyamics of point masses and solid bodies. Students will acquire the c
Show more
Related lectures (34)
Amino Acids: Structure, Chirality, and Isomerism
Explores amino acids, chirality, optical rotation, and isomerism, emphasizing the importance of structure and configuration in biological molecules.
Dynamics of Earth: Inertial Frames and Reference Systems
Covers advanced physics topics such as reference frames, dynamics of the Earth, and the Foucault pendulum.
The Chemistry of Strawberries: Aroma, Color, and Sweetness
Explores the compounds behind the aroma, color, and sweetness of strawberries, emphasizing the importance of organic chemistry in everyday compounds.
Show more
Related publications (22)

Catalytic enantioselective Pictet-Spengler reaction of carbonyl compounds: Development and application to the asymmetric total synthesis of indole alkaloids

Rémi Julien Sylvain Andres

This thesis consists in an extensive study about the enantioselective Pictet-Spengler reaction (EPSR) and its application to the total synthesis of monoterpene indole alkaloids (MIAs). The general introduction presents the literature background about this ...
EPFL2022

Ultrafast dynamic switching of optical response based on nonlinear hyperbolic metamaterial platform

Jiaye Wu, Qian Li

The pursuit of high-speed and on-chip optical communication systems has promoted extensive exploration of all-optical control of light-matter interactions via nonlinear optical processes. Here, we have numerically investigated the ultrafast dynamic switchi ...
Optica Publishing Group2022

Near-Enantiopure Trimerization of 9-Ethynylphenanthrene on a Chiral Metal Surface

Harald Brune, Roland Widmer, Aliaksandr Yakutovich, Jan Prinz, Samuel Thomas Stolz

Enantioselectivity in heterogeneous catalysis strongly depends on the chirality transfer between catalyst surface and all reactants, intermediates, and the product along the reaction pathway. Herein we report the first enantioselective on-surface synthesis ...
2020
Show more
Related concepts (7)
Anomer
In carbohydrate chemistry, a pair of anomers () is a pair of near-identical stereoisomers or diastereomers that differ at only the anomeric carbon, the carbon that bears the aldehyde or ketone functional group in the sugar's open-chain form. However, in order for anomers to exist, the sugar must be in its cyclic form, since in open-chain form, the anomeric carbon is planar and thus achiral. More formally stated, then, an anomer is an epimer at the hemiacetal/hemiketal carbon in a cyclic saccharide.
Maltose
Maltose (ˈmɔːltoʊs or ˈmɔːltoʊz), also known as maltobiose or malt sugar, is a disaccharide formed from two units of glucose joined with an α(1→4) bond. In the isomer isomaltose, the two glucose molecules are joined with an α(1→6) bond. Maltose is the two-unit member of the amylose homologous series, the key structural motif of starch. When beta-amylase breaks down starch, it removes two glucose units at a time, producing maltose. An example of this reaction is found in germinating seeds, which is why it was named after malt.
Optical rotation
Optical rotation, also known as polarization rotation or circular birefringence, is the rotation of the orientation of the plane of polarization about the optical axis of linearly polarized light as it travels through certain materials. Circular birefringence and circular dichroism are the manifestations of optical activity. Optical activity occurs only in chiral materials, those lacking microscopic mirror symmetry. Unlike other sources of birefringence which alter a beam's state of polarization, optical activity can be observed in fluids.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.