Random seedA random seed (or seed state, or just seed) is a number (or vector) used to initialize a pseudorandom number generator. For a seed to be used in a pseudorandom number generator, it does not need to be random. Because of the nature of number generating algorithms, so long as the original seed is ignored, the rest of the values that the algorithm generates will follow probability distribution in a pseudorandom manner.
Cryptographic primitiveCryptographic primitives are well-established, low-level cryptographic algorithms that are frequently used to build cryptographic protocols for computer security systems. These routines include, but are not limited to, one-way hash functions and encryption functions. When creating cryptographic systems, designers use cryptographic primitives as their most basic building blocks. Because of this, cryptographic primitives are designed to do one very specific task in a precisely defined and highly reliable fashion.
Randomized algorithmA randomized algorithm is an algorithm that employs a degree of randomness as part of its logic or procedure. The algorithm typically uses uniformly random bits as an auxiliary input to guide its behavior, in the hope of achieving good performance in the "average case" over all possible choices of random determined by the random bits; thus either the running time, or the output (or both) are random variables.
Cryptographic protocolA cryptographic protocol is an abstract or concrete protocol that performs a security-related function and applies cryptographic methods, often as sequences of cryptographic primitives. A protocol describes how the algorithms should be used and includes details about data structures and representations, at which point it can be used to implement multiple, interoperable versions of a program. Cryptographic protocols are widely used for secure application-level data transport.
/dev/randomIn Unix-like operating systems, and are s that serve as cryptographically secure pseudorandom number generators. They allow access to environmental noise collected from device drivers and other sources. typically blocked if there was less entropy available than requested; more recently (see below for the differences between operating systems) it usually blocks at startup until sufficient entropy has been gathered, then unblocks permanently.
Key generationKey generation is the process of generating keys in cryptography. A key is used to encrypt and decrypt whatever data is being encrypted/decrypted. A device or program used to generate keys is called a key generator or keygen. Modern cryptographic systems include symmetric-key algorithms (such as DES and AES) and public-key algorithms (such as RSA). Symmetric-key algorithms use a single shared key; keeping data secret requires keeping this key secret. Public-key algorithms use a public key and a private key.
Stream cipherA stream cipher is a symmetric key cipher where plaintext digits are combined with a pseudorandom cipher digit stream (keystream). In a stream cipher, each plaintext digit is encrypted one at a time with the corresponding digit of the keystream, to give a digit of the ciphertext stream. Since encryption of each digit is dependent on the current state of the cipher, it is also known as state cipher. In practice, a digit is typically a bit and the combining operation is an exclusive-or (XOR).
Cryptographic nonceIn cryptography, a nonce is an arbitrary number that can be used just once in a cryptographic communication. It is often a random or pseudo-random number issued in an authentication protocol to ensure that old communications cannot be reused in replay attacks. They can also be useful as initialization vectors and in cryptographic hash functions. A nonce is an arbitrary number used only once in a cryptographic communication, in the spirit of a nonce word. They are often random or pseudo-random numbers.
PseudorandomnessA pseudorandom sequence of numbers is one that appears to be statistically random, despite having been produced by a completely deterministic and repeatable process. Simply put, the problem is that many of the sources of randomness available to humans (such as rolling dice) rely on physical processes not readily available to computer programs. The generation of random numbers has many uses, such as for random sampling, Monte Carlo methods, board games, or gambling.
Applications of randomnessRandomness has many uses in science, art, statistics, cryptography, gaming, gambling, and other fields. For example, random assignment in randomized controlled trials helps scientists to test hypotheses, and random numbers or pseudorandom numbers help video games such as video poker. These uses have different levels of requirements, which leads to the use of different methods. Mathematically, there are distinctions between randomization, pseudorandomization, and quasirandomization, as well as between random number generators and pseudorandom number generators.