A cryptographic protocol is an abstract or concrete protocol that performs a security-related function and applies cryptographic methods, often as sequences of cryptographic primitives. A protocol describes how the algorithms should be used and includes details about data structures and representations, at which point it can be used to implement multiple, interoperable versions of a program. Cryptographic protocols are widely used for secure application-level data transport. A cryptographic protocol usually incorporates at least some of these aspects: Key agreement or establishment Entity authentication Symmetric encryption and message authentication material construction Secured application-level data transport Non-repudiation methods Secret sharing methods Secure multi-party computation For example, Transport Layer Security (TLS) is a cryptographic protocol that is used to secure web (HTTPS) connections. It has an entity authentication mechanism, based on the X.509 system; a key setup phase, where a symmetric encryption key is formed by employing public-key cryptography; and an application-level data transport function. These three aspects have important interconnections. Standard TLS does not have non-repudiation support. There are other types of cryptographic protocols as well, and even the term itself has various readings; Cryptographic application protocols often use one or more underlying key agreement methods, which are also sometimes themselves referred to as "cryptographic protocols". For instance, TLS employs what is known as the Diffie–Hellman key exchange, which although it is only a part of TLS per se, Diffie–Hellman may be seen as a complete cryptographic protocol in itself for other applications. A wide variety of cryptographic protocols go beyond the traditional goals of data confidentiality, integrity, and authentication to also secure a variety of other desired characteristics of computer-mediated collaboration.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (8)
COM-506: Student seminar: security protocols and applications
This seminar introduces the participants to the current trends, problems, and methods in the area of communication security.
COM-501: Advanced cryptography
This course reviews some failure cases in public-key cryptography. It introduces some cryptanalysis techniques. It also presents fundamentals in cryptography such as interactive proofs. Finally, it pr
COM-401: Cryptography and security
This course introduces the basics of cryptography. We review several types of cryptographic primitives, when it is safe to use them and how to select the appropriate security parameters. We detail how
Show more
Related publications (32)

On the Theory and Practice of Modern Secure Messaging

Daniel Patrick Collins

Billions of people now have conversations daily over the Internet. A large portion of this communication takes place via secure messaging protocols that offer "end-to-end encryption'" guarantees and resilience to compromise like the widely-used Double Ratc ...
EPFL2024

Differentially private multi-agent constraint optimization

Boi Faltings, Sankarshan Damle, Sujit Prakash Gujar, Aleksei Triastcyn

Distributed constraint optimization (DCOP) is a framework in which multiple agents with private constraints (or preferences) cooperate to achieve a common goal optimally. DCOPs are applicable in several multi-agent coordination/allocation problems, such as ...
Dordrecht2024

Thwarting Malicious Adversaries in Homomorphic Encryption Pipelines

Sylvain Chatel

Homomorphic Encryption (HE) enables computations to be executed directly on encrypted data. As such, it is an auspicious solution for protecting the confidentiality of sensitive data without impeding its usability. However, HE does not provide any guarante ...
EPFL2023
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.