Critical chain project management (CCPM) is a method of planning and managing projects that emphasizes the resources (people, equipment, physical space) required to execute project tasks. It was developed by Eliyahu M. Goldratt. It differs from more traditional methods that derive from critical path and PERT algorithms, which emphasize task order and rigid scheduling. A critical chain project network strives to keep resources levelled, and requires that they be flexible in start times.
Critical chain project management is based on methods and algorithms derived from Theory of Constraints. The idea of CCPM was introduced in 1997 in Eliyahu M. Goldratt's book, Critical Chain. The application of CCPM has been credited with achieving projects 10% to 50% faster and/or cheaper than the traditional methods (i.e., CPM, PERT, Gantt, etc.) developed from 1910 to 1950s.
According to studies of traditional project management methods by Standish Group and others as of 1998, only 44% of projects typically finish on time. Projects typically complete at 222% of the duration originally planned, 189% of the original budgeted cost, 70% of projects fall short of their planned scope (technical content delivered), and 30% are cancelled before completion. CCPM tries to improve performance relative to these traditional statistics.
With traditional project management methods, 30% of lost time and resources are typically consumed by wasteful techniques such as bad multitasking (in particular task switching), student syndrome, Parkinson's law, in-box delays, and lack of prioritization.
In a project plan, the critical chain is the sequence of both precedence- and resource-dependent tasks that prevents a project from being completed in a shorter time, given finite resources. If resources are always available in unlimited quantities, then a project's critical chain is identical to its critical path method.
Critical chain is an alternative to critical path analysis. Main features that distinguish critical chain from critical path are:
Use of (often implicit) resource dependencies.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course will cover all the aspects of product design and system engineering from learning relevant methods to the actual implementation in a hands-on practice of product development.
Comment apprendre les compétences cognitives et collaboratives nécessaires aux projets ? Ce cours est une exploration active des bases théoriques et pratiques des modèles, contextes et outils de la pé
The critical path method (CPM), or critical path analysis (CPA), is an algorithm for scheduling a set of project activities. A critical path is determined by identifying the longest stretch of dependent activities and measuring the time required to complete them from start to finish. It is commonly used in conjunction with the program evaluation and review technique (PERT). The CPM is a project-modeling technique developed in the late 1950s by Morgan R. Walker of DuPont and James E. Kelley Jr. of Remington Rand.
The program evaluation and review technique (PERT) is a statistical tool used in project management, which was designed to analyze and represent the tasks involved in completing a given project. First developed by the United States Navy in 1958, it is commonly used in conjunction with the critical path method (CPM) that was introduced in 1957. PERT is a method of analyzing the tasks involved in completing a given project, especially the time needed to complete each task, and to identify the minimum time needed to complete the total project.
The following outline is provided as an overview of and topical guide to project management: Project management – discipline of planning, organizing, securing, managing, leading, and controlling resources to achieve specific goals. A project is a temporary endeavor with a defined beginning and end (usually time-constrained, and often constrained by funding or deliverables), undertaken to meet unique goals and objectives, typically to bring about beneficial change or added value.
In this work, we develop timing-driven CAD support for FPGA architectures with direct connections between LUTs. We do so by proposing an efficient ILP-based detailed placer, which moves a carefully selected subset of LUTs from their original positions, so ...
The new Brain Imaging Beamline (BIB) of the Taiwan Photon Source (TPS) has been commissioned and opened to users. The BIB and in particular its endstation are designed to take advantage of bright unmonochromatized synchrotron X-rays and target fast 3D imag ...
Forecasting the motion of motorcycles is a critical task for an autonomous system deployed in complex traffic, considering its distinguished characteristics compared to other vehicles. Motion of motorcycles in a scene is governed by the traffic context, i. ...