Integral elementIn commutative algebra, an element b of a commutative ring B is said to be integral over A, a subring of B, if there are n ≥ 1 and aj in A such that That is to say, b is a root of a monic polynomial over A. The set of elements of B that are integral over A is called the integral closure of A in B. It is a subring of B containing A. If every element of B is integral over A, then we say that B is integral over A, or equivalently B is an integral extension of A.
Noncommutative ringIn mathematics, a noncommutative ring is a ring whose multiplication is not commutative; that is, there exist a and b in the ring such that ab and ba are different. Equivalently, a noncommutative ring is a ring that is not a commutative ring. Noncommutative algebra is the part of ring theory devoted to study of properties of the noncommutative rings, including the properties that apply also to commutative rings. Sometimes the term noncommutative ring is used instead of ring to refer to an unspecified ring which is not necessarily commutative, and hence may be commutative.
Grothendieck groupIn mathematics, the Grothendieck group, or group of differences, of a commutative monoid M is a certain abelian group. This abelian group is constructed from M in the most universal way, in the sense that any abelian group containing a homomorphic of M will also contain a homomorphic image of the Grothendieck group of M. The Grothendieck group construction takes its name from a specific case in , introduced by Alexander Grothendieck in his proof of the Grothendieck–Riemann–Roch theorem, which resulted in the development of K-theory.
Koszul complexIn mathematics, the Koszul complex was first introduced to define a cohomology theory for Lie algebras, by Jean-Louis Koszul (see Lie algebra cohomology). It turned out to be a useful general construction in homological algebra. As a tool, its homology can be used to tell when a set of elements of a (local) ring is an M-regular sequence, and hence it can be used to prove basic facts about the depth of a module or ideal which is an algebraic notion of dimension that is related to but different from the geometric notion of Krull dimension.
Module homomorphismIn algebra, a module homomorphism is a function between modules that preserves the module structures. Explicitly, if M and N are left modules over a ring R, then a function is called an R-module homomorphism or an R-linear map if for any x, y in M and r in R, In other words, f is a group homomorphism (for the underlying additive groups) that commutes with scalar multiplication. If M, N are right R-modules, then the second condition is replaced with The of the zero element under f is called the kernel of f.
Projective moduleIn mathematics, particularly in algebra, the class of projective modules enlarges the class of free modules (that is, modules with basis vectors) over a ring, by keeping some of the main properties of free modules. Various equivalent characterizations of these modules appear below. Every free module is a projective module, but the converse fails to hold over some rings, such as Dedekind rings that are not principal ideal domains.
Completion of a ringIn abstract algebra, a completion is any of several related functors on rings and modules that result in complete topological rings and modules. Completion is similar to localization, and together they are among the most basic tools in analysing commutative rings. Complete commutative rings have a simpler structure than general ones, and Hensel's lemma applies to them. In algebraic geometry, a completion of a ring of functions R on a space X concentrates on a formal neighborhood of a point of X: heuristically, this is a neighborhood so small that all Taylor series centered at the point are convergent.
Stalk (sheaf)The stalk of a sheaf is a mathematical construction capturing the behaviour of a sheaf around a given point. Sheaves are defined on open sets, but the underlying topological space consists of points. It is reasonable to attempt to isolate the behavior of a sheaf at a single fixed point of . Conceptually speaking, we do this by looking at small neighborhoods of the point. If we look at a sufficiently small neighborhood of , the behavior of the sheaf on that small neighborhood should be the same as the behavior of at that point.
Generating set of a moduleIn mathematics, a generating set Γ of a module M over a ring R is a subset of M such that the smallest submodule of M containing Γ is M itself (the smallest submodule containing a subset is the intersection of all submodules containing the set). The set Γ is then said to generate M. For example, the ring R is generated by the identity element 1 as a left R-module over itself. If there is a finite generating set, then a module is said to be finitely generated. This applies to ideals, which are the submodules of the ring itself.
Tor functorIn mathematics, the Tor functors are the derived functors of the tensor product of modules over a ring. Along with the Ext functor, Tor is one of the central concepts of homological algebra, in which ideas from algebraic topology are used to construct invariants of algebraic structures. The homology of groups, Lie algebras, and associative algebras can all be defined in terms of Tor. The name comes from a relation between the first Tor group Tor1 and the torsion subgroup of an abelian group.