Concept

Generating set of a module

In mathematics, a generating set Γ of a module M over a ring R is a subset of M such that the smallest submodule of M containing Γ is M itself (the smallest submodule containing a subset is the intersection of all submodules containing the set). The set Γ is then said to generate M. For example, the ring R is generated by the identity element 1 as a left R-module over itself. If there is a finite generating set, then a module is said to be finitely generated. This applies to ideals, which are the submodules of the ring itself. In particular, a principal ideal is an ideal that has a generating set consisting of a single element. Explicitly, if Γ is a generating set of a module M, then every element of M is a (finite) R-linear combination of some elements of Γ; i.e., for each x in M, there are r1, ..., rm in R and g1, ..., gm in Γ such that Put in another way, there is a surjection where we wrote rg for an element in the g-th component of the direct sum. (Coincidentally, since a generating set always exists, e.g. M itself, this shows that a module is a quotient of a free module, a useful fact.) A generating set of a module is said to be minimal if no proper subset of the set generates the module. If R is a field, then a minimal generating set is the same thing as a basis. Unless the module is finitely generated, there may exist no minimal generating set. The cardinality of a minimal generating set need not be an invariant of the module; Z is generated as a principal ideal by 1, but it is also generated by, say, a minimal generating set {2, 3}. What is uniquely determined by a module is the infimum of the numbers of the generators of the module. Let R be a local ring with maximal ideal m and residue field k and M finitely generated module. Then Nakayama's lemma says that M has a minimal generating set whose cardinality is . If M is flat, then this minimal generating set is linearly independent (so M is free). See also: Minimal resolution. A more refined information is obtained if one considers the relations between the generators; see Free presentation of a module.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.