Prometaphase is the phase of mitosis following prophase and preceding metaphase in eukaryotic somatic cells. In prometaphase, the nuclear membrane breaks apart into numerous "membrane vesicles," and the chromosomes inside form protein structures called kinetochores. Kinetochore microtubules emerging from the centrosomes at the poles (ends) of the spindle reach the chromosomes and attach to the kinetochores, throwing the chromosomes into agitated motion. Other spindle microtubules make contact with microtubules coming from the opposite pole. Forces exerted by protein "motors" associated with spindle microtubules move the chromosomes toward the centre of the cell.
Prometaphase is not always presented as a distinct part of mitosis. In sources that do not use the term, the events described here are instead assigned to late prophase and early metaphase.
The microtubules are composed of two types, kinetochore microtubules and non-kinetochore microtubules.
Kinetochore microtubules begin searching for kinetochores to attach to.
A number of non-kinetochore microtubules or polar microtubules find and interact with corresponding nonkinetochore microtubules from the opposite centrosome to form the mitotic spindle.
The role of prometaphase is completed when all of the kinetochore microtubules have attached to their kinetochores, upon which metaphase begins. An unattached kinetochore, and thus a non-aligned chromosome, even when most of the other chromosomes have lined up, will trigger the spindle checkpoint signal. This prevents premature progression into anaphase by inhibiting the anaphase-promoting complex until all kinetochores are attached and all the chromosomes aligned.
Early events of metaphase can coincide with the later events of prometaphase, as chromosomes with connected kinetochores will start the events of metaphase individually before other chromosomes with unconnected kinetochores that are still lingering in the events of prometaphase.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Basic course in biochemistry as well as cellular and molecular biology for non-life science students enrolling at the Master or PhD thesis level from various engineering disciplines. It reviews essent
Explains chromosome duplication, separation, meiosis stages, and genetic variation consequences.
Explains the process of mitosis and the cell cycle phases.
The nuclear envelope, also known as the nuclear membrane, is made up of two lipid bilayer membranes that in eukaryotic cells surround the nucleus, which encloses the genetic material. The nuclear envelope consists of two lipid bilayer membranes: an inner nuclear membrane and an outer nuclear membrane. The space between the membranes is called the perinuclear space. It is usually about 10–50 nm wide. The outer nuclear membrane is continuous with the endoplasmic reticulum membrane.
The eukaryotes constitute the domain of Eukaryota (juːˈkærioʊts,_-əts), organisms whose cells have a nucleus. All animals, plants, fungi, and many unicellular organisms are eukaryotes. They constitute a major group of life forms, alongside the two groups of prokaryotes, the Bacteria and the Archaea. Eukaryotes represent a small minority of the number of organisms, but due to their generally much larger size, their collective global biomass is much larger than that of prokaryotes.
Metaphase ( and ) is a stage of mitosis in the eukaryotic cell cycle in which chromosomes are at their second-most condensed and coiled stage (they are at their most condensed in anaphase). These chromosomes, carrying genetic information, align in the equator of the cell before being separated into each of the two daughter cells. Metaphase accounts for approximately 4% of the cell cycle's duration. Preceded by events in prometaphase and followed by anaphase, microtubules formed in prophase have already found and attached themselves to kinetochores in metaphase.
Difficulties to replicate telomeres - the ends of our chromosomes - can cause telomere shortening andgenome instability. These difficulties are due to the repetitive DNA sequence and distinct structures at telomeresthat challenge the semi-conservative DNA ...
The local structural organization of chromatin in mitotic chromosomes is not well understood. A new cryo-electron tomography study from the Daban laboratory (Chicano et al, ) reveals that mitotic chromatin isolated from human cells can assume a plate-like ...
WILEY2019
It has become apparent that difficulties to replicate telomeres concern not only the very ends of eukaryotic chromosomes. The challenges already start when the replication fork enters the telomeric repeats. The obstacles encountered consist mainly of nonca ...