Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
In geometry, an n-gonal antiprism or n-antiprism is a polyhedron composed of two parallel direct copies (not mirror images) of an n-sided polygon, connected by an alternating band of 2n triangles. They are represented by the Conway notation An. Antiprisms are a subclass of prismatoids, and are a (degenerate) type of snub polyhedron. Antiprisms are similar to prisms, except that the bases are twisted relatively to each other, and that the side faces (connecting the bases) are 2n triangles, rather than n quadrilaterals. The dual polyhedron of an n-gonal antiprism is an n-gonal trapezohedron. At the intersection of modern-day graph theory and coding theory, the triangulation of a set of points have interested mathematicians since Isaac Newton, who fruitlessly sought a mathematical proof of the kissing number problem in 1694. The existence of antiprisms was discussed, and their name was coined by Johannes Kepler, though it is possible that they were previously known to Archimedes, as they satisfy the same conditions on faces and on vertices as the Archimedean solids. According to Ericson and Zinoviev, Harold Scott MacDonald Coxeter wrote at length on the topic, and was among the first to apply the mathematics of Victor Schlegel to this field. Knowledge in this field is "quite incomplete" and "was obtained fairly recently", i.e. in the 20th century. For example, as of 2001 it had been proven for only a limited number of non-trivial cases that the n-gonal antiprism is the mathematically optimal arrangement of 2n points in the sense of maximizing the minimum Euclidean distance between any two points on the set: in 1943 by László Fejes Tóth for 4 and 6 points (digonal and trigonal antiprisms, which are Platonic solids); in 1951 by Kurt Schütte and Bartel Leendert van der Waerden for 8 points (tetragonal antiprism, which is not a cube). The chemical structure of binary compounds has been remarked to be in the family of antiprisms; especially those of the family of boron hydrides (in 1975) and carboranes because they are isoelectronic.