In geometry, an n-gonal antiprism or n-antiprism is a polyhedron composed of two parallel direct copies (not mirror images) of an n-sided polygon, connected by an alternating band of 2n triangles. They are represented by the Conway notation An.
Antiprisms are a subclass of prismatoids, and are a (degenerate) type of snub polyhedron.
Antiprisms are similar to prisms, except that the bases are twisted relatively to each other, and that the side faces (connecting the bases) are 2n triangles, rather than n quadrilaterals.
The dual polyhedron of an n-gonal antiprism is an n-gonal trapezohedron.
At the intersection of modern-day graph theory and coding theory, the triangulation of a set of points have interested mathematicians since Isaac Newton, who fruitlessly sought a mathematical proof of the kissing number problem in 1694. The existence of antiprisms was discussed, and their name was coined by Johannes Kepler, though it is possible that they were previously known to Archimedes, as they satisfy the same conditions on faces and on vertices as the Archimedean solids. According to Ericson and Zinoviev, Harold Scott MacDonald Coxeter wrote at length on the topic, and was among the first to apply the mathematics of Victor Schlegel to this field.
Knowledge in this field is "quite incomplete" and "was obtained fairly recently", i.e. in the 20th century. For example, as of 2001 it had been proven for only a limited number of non-trivial cases that the n-gonal antiprism is the mathematically optimal arrangement of 2n points in the sense of maximizing the minimum Euclidean distance between any two points on the set: in 1943 by László Fejes Tóth for 4 and 6 points (digonal and trigonal antiprisms, which are Platonic solids); in 1951 by Kurt Schütte and Bartel Leendert van der Waerden for 8 points (tetragonal antiprism, which is not a cube).
The chemical structure of binary compounds has been remarked to be in the family of antiprisms; especially those of the family of boron hydrides (in 1975) and carboranes because they are isoelectronic.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In geometry, a uniform polyhedron has regular polygons as faces and is vertex-transitive (i.e., there is an isometry mapping any vertex onto any other). It follows that all vertices are congruent. Uniform polyhedra may be regular (if also face- and edge-transitive), quasi-regular (if also edge-transitive but not face-transitive), or semi-regular (if neither edge- nor face-transitive). The faces and vertices need not be convex, so many of the uniform polyhedra are also star polyhedra.
In geometry, a polyhedron (: polyhedra or polyhedrons; ) is a three-dimensional shape with flat polygonal faces, straight edges and sharp corners or vertices. A convex polyhedron is a polyhedron that bounds a convex set. Every convex polyhedron can be constructed as the convex hull of its vertices, and for every finite set of points, not all on the same plane, the convex hull is a convex polyhedron. Cubes and pyramids are examples of convex polyhedra. A polyhedron is a 3-dimensional example of a polytope, a more general concept in any number of dimensions.
In geometry, a Platonic solid is a convex, regular polyhedron in three-dimensional Euclidean space. Being a regular polyhedron means that the faces are congruent (identical in shape and size) regular polygons (all angles congruent and all edges congruent), and the same number of faces meet at each vertex. There are only five such polyhedra: Geometers have studied the Platonic solids for thousands of years. They are named for the ancient Greek philosopher Plato who hypothesized in one of his dialogues, the Timaeus, that the classical elements were made of these regular solids.
As historical stone masonry structures are vulnerable and prone to damage in earthquakes, investigating their structural integrity is important to reduce injuries and casualties while preserving their historical value. Stone masonry is a composite material ...
Let d(1) < d(2) < ... denote the set of all distances between two vertices of a convex n-gon. We show that the number of pairs of vertices at distance d(2) from one another is at most n + O(1). (C) 2013 Elsevier B.V. All rights reserved. ...
In this paper we study a question related to the classical Erdos-Ko-Rado theorem, which states that any family of k-element subsets of the set [n] = {1,..., n} in which any two sets intersect has cardinality at most ((n-1)(k-1)). We say that two non-empty ...