Tobias KippenbergTobias J. Kippenberg is Full Professor of Physics at EPFL and leads the Laboratory of Photonics and Quantum Measurement. He obtained his BA at the RWTH Aachen, and MA and PhD at the California Institute of Technology (Caltech in Pasadena, USA). From 2005- 2009 he lead an Independent Research Group at the MPI of Quantum Optics, and is at EPFL since. His research interest are the Science and Applications of ultra high Q microcavities; in particular with his research group he discovered chip-scale Kerr frequency comb generation (Nature 2007, Science 2011) and observed radiation pressure backaction effects in microresonators that now developed into the field of cavity optomechanics (Science 2008). Tobias Kippenberg is alumni of the “Studienstiftung des Deutschen Volkes”. For his invention of “chip-scale frequency combs” he received he Helmholtz Price for Metrology (2009) and the EFTF Young Investigator Award (2010). For his research on cavity optomechanics, he received the EPS Fresnel Prize (2009). In addition he is recipient of the ICO Prize in Optics (2014), the Swiss National Latsis award (2015), the German Wilhelm Klung Award (2015) and ZEISS Research Award (2018). He is fellow of the APS and OSA, and listed since 2014 in the Thomas Reuters highlycited.com in the domain of Physics. EDUCATION 2009: Habilitation (Venia Legendi) in Physics, Ludwig-Maximilians-Universität München 2004: PhD, California Institute of Technology (Advisor Professor Kerry Vahala) 2000: Master of Science (Applied Physics), California Institute of Technology 1998: BA in Physics, Technical University of Aachen (RWTH), Germany 1998: BA in Electrical Engineering, Technical University of Aachen (RWTH), Germany ACADEMIC POSITIONS 2013 - present: Full Professor EPFL 2010 - 2012: Associate Professor EPFL 2008 - 2010: Tenure Track Assistant Professor, Ecole Polytechnique Federale de Lausanne 2007 - present: Marie Curie Excellent Grant Team Leader, Max Planck Institute of Quantum Optics (Division of Prof.T.W. Hänsch) 2005 - present: Leader of an Independent Junior Research Group, Max Planck Institute 2005- present: Habilitant (Prof. Hänsch) Ludwig-Maximilians-Universität (LMU) 2005-2006: Postdoctoral Scholar, Center for the Physics of Information, California Institute of Technology 2000-2004: Graduate Research Assistant, California Institute of Technology PRIZES AND HONORS: ZEISS Research Award 2018 Fellow of the APS 2016 Klung-Wilhelmy Prize 2015 Swiss Latsis Prize 2014 Selected Thomson Reuters Highly Cited Researcher in Physics, 2014/2015 ICO Prize, 2013 EFTF Young Scientist Award (for "invention of microresonator based frequency combs") 2010 Fresnel Prize of the European Physical Society (for contributions to Optomechanics) 2009 Helmholtz Prize for Metrology (for invention of the monolithic frequency comb) 2009 1st Prize winner of the EU Contest for Young Scientists, Helsinki, Finland. Sept. 1996 Jugend forscht 1st Physics Prize at the German National Science Contest May 1996 FELLOWSHIPS Fellow of the German National Merit Foundation ("Studienstiftung des Deutschen Volkes") 1998-2002 Member of the Daimler-Chysler-Fellowship-Organization 1998-2002 Dr. Ulderup Fellowship 1999-2000 RESEARCH INTERESTS Experimental and theoretical research in photonics, notably high Q optical microcavities and their use in cavity quantum optomechanics and frequency metrology PUBLICATIONS AND OFTEN CITED METRICS*: >70 Publications in peer reviewed journals Researcher Google Profile: http://scholar.google.ch/citations?user=PRCbG2kAAAAJ&hl=en h-Index 54 (Google scholar H: 64, >25,000 citations) Thomson Reuters/Claravite List of Highly Cited Researchers (2014,2015,2016,2017) careful in its use: https://www.aps.org/publications/apsnews/201411/backpage.cfm KEY PUBLICATIONS AND REVIEWS: A. Ghadimi, et al. Elastic strain engineering for ultra high Q nanomechanical oscillators Science, (2018) Trocha, et al. Ultrafast distance measurements using soliton microresonator frequency combs Science, Vol. 359 (2018) [joint work with C. Koos] Pablo-Marin et al. Microresonator-based solitons for massively parallel coherent optical communications Nature (2017) [joint work with C. Koos] V. Brasch, et al. Photonic chip-based optical frequency comb using soliton Cherenkov radiation. Science, vol. 351, num. 6271 (2015) Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Reviews of Modern Physics 86, 1391-1452, (2014) Wilson, D. J. et al. Measurement and control of a mechanical oscillator at its thermal decoherence rate. Nature (2014). Verhagen, E., Deleglise, S., Weis, S., Schliesser, A. & Kippenberg, T. J. Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode. Nature 482, 63-67 (2012). Kippenberg, T. J., Holzwarth, R. & Diddams, S. A. Microresonator-based optical frequency combs. Science 332, 555-559, (2011). Weis, S. et al. Optomechanically induced transparency. Science 330, 1520-1523 (2010). Kippenberg, T. J. & Vahala, K. J. Cavity optomechanics: back-action at the mesoscale. Science 321, 1172-1176, (2008). Del'Haye, P. et al. Optical frequency comb generation from a monolithic microresonator. Nature (2007) Schliesser, A., DelHaye, P., Nooshi, N., Vahala, K. & Kippenberg, T. Radiation Pressure Cooling of a Micromechanical Oscillator Using Dynamical Backaction. Physical Review Letters 97, (2006). Theo LasserDe nationalité allemande, né en 1952 à Lauchheim (Baden-Württemberg). Après des études de physique à l'Université Fridericiana de Karlsruhe, il y obtient son diplôme de physique en 1978.
En 1979, il rejoint l'Institut de Recherches franco-allemand à Saint-Louis (France) comme collaborateur scientifique. En 1986, il rejoint la division de recherche de Carl Zeiss à Oberkochen (Allemagne) où il développe principalement divers systèmes laser pour des applications médicales. Dès 1990, il dirige le laboratoire laser de la division médicale. En 1993, il prend la direction de l'unité "laser d'ophtalmologie". Dès le début 1995, il est chargé de restructurer et regrouper les nombreuses activités d'ophtalmologie chez Carl Zeiss et de les transférer à Jena. Durant cette période, il réalise des nouveaux instruments de réfraction, des biomicroscopes et des caméras rétiniennes.
Dès janvier 1998, il dirige la recherche de Carl Zeiss à Jena où il initie de nouveaux projets en microscopie, en microtechnique et en recherche médicale. En juillet 1998, il est nommé professeur ordinaire en optique biomédicale à l'Institut d'optique appliquée. Au sein du Département de microtechnique, son activité de recherche porte sur la photonique biomédicale. Il participe à l'enseignement d'optique et d'instrumentation biomédicale.
Short CV
1972 Physics University of Karlsruhe (Germany)
1979 l'Institut de Recherches franco-allemand à Saint-Louis (France)
1986 central research division Carl Zeiss, Oberkochen (Germany)
1990 Med - Division, ophthalmic lasers
1994 Ophthalmology division, Carl Zeiss Jena
1998 Head of Central research Carl Zeiss Jena
1998 full Professor Ecole Polytechnique Federale Lausanne, Switzerland
Luc ThévenazLuc Thévenaz received in 1982 the M.Sc. degree in astrophysics from the Observatory of Geneva, Switzerland, and in 1988 the Ph.D. degree in physics from the University of Geneva, Switzerland. He developed at this moment his field of expertise, i.e. fibre optics. In 1988 he joined the Swiss Federal Institute of Technology of Lausanne (EPFL) where he currently leads a research group involved in photonics, namely fibre optics and optical sensing. Research topics include Brillouin-scattering fibre sensors, nonlinear fibre optics, slow & fast light and laser spectroscopy in gases. His main achievements are: - the invention of a novel configuration for distributed Brillouin fibre sensing based on a single laser source, resulting in a high intrinsic stability making for the first time field measurements possible, - the development of a photoacoustic gas trace sensor using a near infra-red semiconductor laser, detecting a gas concentration at the ppb level, - the first experimental demonstration of optically-controlled slow & fast light in optical fibres, realized at ambient temperature and operating at any wavelength since based on stimulated Brillouin scattering. The first negative group velocity of light was also realized in optical fibres using this approach. In 1991, he visited the PUC University in Rio de Janeiro, Brazil where he worked on the generation of picosecond pulses in semiconductor lasers. In 1991-1992 he stayed at Stanford University, USA, where he participated in the development of a Brillouin laser gyroscope. He joined in 1998 the company Orbisphere Laboratories SA in Neuchâtel, Switzerland, as Expert Scientist to develop gas trace sensors based on photoacoustic laser spectroscopy. In 1998 and 1999 he visited the Korea Advanced Institute of Science and Technology (KAIST) in Daejon, South Korea, where he worked on fibre laser current sensors. In 2000 he co-founded the spin-off company Omnisens that is developing and commercializing advanced photonic instrumentation. In 2007 he visited Tel Aviv University where he studied the all-optical control of polarization in optical fibres. During winter 2010 he stayed at the University of Sydney where he studied applications of stimulated Brillouin scattering in chalcogenide waveguides. In 2014 he stayed at the Polytechnic University of Valencia where he worked on microwave applications of stimulated Brillouin scattering. He was member of the Consortium in the FP7 European Project GOSPEL "Governing the speed of light", was Chairman of the European COST Action 299 "FIDES: Optical Fibres for New Challenges Facing the Information Society" and is author or co-author of some 480 publications and 12 patents. He is now Coordinator of the H2020 Marie Skłodowska-Curie Innovative Training Networks FINESSE (FIbre NErve Systems for Sensing). He is co-Executive Editor-in-Chief of the journal "Nature Light: Science & Applications" and is Member of the Editorial Board (Associate Editor) for the journal "APL Photonics" & "Laser & Photonics Reviews". He is also Fellow of both the IEEE and the Optical Society (OSA).
Jean-Yves Le BoudecJean-Yves Le Boudec is full professor at EPFL and fellow of the IEEE. He graduated from Ecole Normale Superieure de Saint-Cloud, Paris, where he obtained the Agregation in Mathematics in 1980 (rank 4) and received his doctorate in 1984 from the University of Rennes, France. From 1984 to 1987 he was with INSA/IRISA, Rennes. In 1987 he joined Bell Northern Research, Ottawa, Canada, as a member of scientific staff in the Network and Product Traffic Design Department. In 1988, he joined the IBM Zurich Research Laboratory where he was manager of the Customer Premises Network Department. In 1994 he joined EPFL as associate professor. His interests are in the performance and architecture of communication systems. In 1984, he developed analytical models of multiprocessor, multiple bus computers. In 1990 he invented the concept called "MAC emulation" which later became the ATM forum LAN emulation project, and developed the first ATM control point based on OSPF. He also launched public domain software for the interworking of ATM and TCP/IP under Linux. He proposed in 1998 the first solution to the failure propagation that arises from common infrastructures in the Internet. He contributed to network calculus, a recent set of developments that forms a foundation to many traffic control concepts in the internet. He earned the Infocom 2005 Best Paper award, with Milan Vojnovic, for elucidating the perfect simulation and stationarity of mobility models, the 2008 IEEE Communications Society William R. Bennett Prize in the Field of Communications Networking, with Bozidar Radunovic, for the analysis of max-min fairness and the 2009 ACM Sigmetrics Best Paper Award, with Augustin Chaintreau and Nikodin Ristanovic, for the mean field analysis of the age of information in gossiping protocols. He is or has been on the program committee or editorial board of many conferences and journals, including Sigcomm, Sigmetrics, Infocom, Performance Evaluation and ACM/IEEE Transactions on Networking. He co-authored the book "Network Calculus" (2001) with Patrick Thiran and is the author of the book "Performance Evaluation of Computer and Communication Systems" (2010).
Edoardo CharbonEdoardo Charbon (SM’00 F’17) received the Elektrotechnik Diploma from ETH Zurich, the M.S. from the University of California at San Diego, and the Ph.D. from the University of California at Berkeley in 1988, 1991, and 1995, respectively, all in electrical engineering and EECS. He has consulted with numerous organizations, including Bosch, X-Fab, Texas Instruments, Maxim, Sony, Agilent, and the Carlyle Group. He was with Cadence Design Systems from 1995 to 2000, where he was the architect of the company's initiative on information hiding for intellectual property protection. In 2000, he joined Canesta Inc., as the Chief Architect, where he led the development of wireless 3-D CMOS image sensors. Since 2002 he has been a member of the faculty of EPFL, where is a full professor since 2015. From 2008 to 2016 he was full professor and chair at the Delft University of Technology, where he spearheaded the university's effort on cryogenic electronics for quantum computing as part of QuTech. He has been the driving force behind the creation of deep-submicron CMOS SPAD technology, which is mass-produced since 2015 and is present in smartphones, telemeters, proximity sensors, and medical diagnostics tools. His interests span from 3-D vision, LiDAR, FLIM, FCS, NIROT to super-resolution microscopy, time-resolved Raman spectroscopy, and cryo-CMOS circuits and systems for quantum computing. He has authored or co-authored over 400 papers and two books, and he holds 23 patents. Dr. Charbon is a distinguished visiting scholar of the W. M. Keck Institute for Space at Caltech, a fellow of the Kavli Institute of Nanoscience Delft, a distinguished lecturer of the IEEE Photonics Society, and a fellow of the IEEE.
Camille Sophie BrèsProf. Camille-Sophie Brès is an Associate Professor in the Institute of Electrical Engineering within the School of Engineering of EPFL. Her primary research interests are centered optical communications and on parametric and nonlinear processes in optical fiber and non-silica platforms for ultrafast signal processing, all optical networks, sensing and light sources. She has authored over thirty peer-reviewed journal articles and has presented more than 15 papers at international conferences. She received the Gordon Wu Fellowship for her graduate studies, the NSF CIANs Diversity Postdoctoral Fellowship in 2009, the Early Career Woman in Engineering Award in 2016. She is a senior member of the IEEE and OSA. 2019 - present: Associate Professor in the Institute of Electrical Engineering, EPFL 2011 - 2018: Assistant Professor in the Institute of Electrical Engineering, EPFL 2010 - 2011: Assistant Project Scientist, University of California San Diego (UCSD) 2007 - 2010: Postdoc in ECE, University of California San Diego (UCSD) 2002 - 2007: Ph.D in Electrical Engineering, Princeton University 1998 - 2002: B.Eng with Honours in Electrical Engineering, McGill University
Pierre-André FarinePierre-André Farine received the Doctoral and Engineering Degrees in Microtechnology from University of Neuchâtel, Switzerland, respectively in 1984 and 1978, and the Engineering in Microtechnology from ETS Le Locle in 1974.
He was working 17 years for the Swiss watch industries (Swatch Group), including developments for high-tech products, such as pager watches, watches including integrated sensors such as pressure, compass, altimeter and temperature sensors for Tissot. He was also involved in prototypes developments for watches including GPS and cellular GSM phones.
Since 8 years, he is Professor in Electronics and Signal Processing at the Institute of Microtechnology IMT, University of Neuchâtel, Switzerland. Full professor at EPFL since January 1st, 2009, he works in the field of low-power integrated products for portable devices, including microelectronics for wireless telecommunications, UWB and GNSS systems. He is Head of the Electronics and Signal Processing Laboratory ESPLAB of the EPFL IMT-NE. His laboratory works also for video and audio compression algorithms and their implementation in low power integrated circuits.
Jean-Pierre HubauxJean-Pierre Hubaux is a full professor at EPFL and head of the Laboratory for Data Security. Through his research, he contributes to laying the foundations and developing the tools for protecting privacy in today’s hyper-connected world. He has pioneered the areas of privacy and security in mobile/wireless networks and in personalized health. He is the academic director of the Center for Digital Trust (C4DT). He leads the Data Protection in Personalized Health (DPPH) project funded by the ETH Council and is a co-chair of the Data Security Work Stream of the Global Alliance for Genomics and Health (GA4GH). From 2008 to 2019 he was one of the seven commissioners of the Swiss FCC. He is a Fellow of both IEEE (2008) and ACM (2010). Recent awards: two of his papers obtained distinctions at the IEEE Symposium on Security and Privacy in 2015 and 2018. He is among the most cited researchers in privacy protection and in information security. Spoken languages: French, English, German, Italian