Concept

Particle accelerator

Related courses (30)
PHYS-314: Quantum physics II
The aim of this course is to familiarize the student with the concepts, methods and consequences of quantum physics.
PHYS-439: Introduction to astroparticle physics
We present the role of particle physics in cosmology and in the description of astrophysical phenomena. We also present the methods and technologies for the observation of cosmic particles.
PHYS-424: Plasma II
This course completes the knowledge in plasma physics that students have acquired in the previous two courses, with a discussion of different applications, in the fields of magnetic confinement and co
PHYS-207(a): General physics : quanta
Ce cours est une introduction à la mécanique quantique. En partant de son développement historique, le cours traite les notions de complémentarité quantique et le principe d'incertitude, le processus
MATH-611: Scientific programming for Engineers
The students will acquire a solid knowledge on the processes necessary to design, write and use scientific software. Software design techniques will be used to program a multi-usage particles code, ai
PHYS-101(en): General physics : mechanics (English)
Students will learn the principles of mechanics to enable a better understanding of physical phenomena, such as the kinematics and dyamics of point masses and solid bodies. Students will acquire the c
PHYS-400: Selected topics in nuclear and particle physics
This course presents the physical principles and the recent research developments on three topics of particle and nuclear physics: the physics of neutrinos, dark matter, and plasmas of quarks and gluo
PHYS-202: Analytical mechanics (for SPH)
Présentation des méthodes de la mécanique analytique (équations de Lagrange et de Hamilton) et introduction aux notions de modes normaux et de stabilité.
PHYS-201(d): General physics: electromagnetism
The topics covered by the course are concepts of fluid mechanics, waves, and electromagnetism.
MICRO-470: Scaling laws in micro & nanosystems
This class adresses scaling laws in MEMS/NEMS. The dominant physical effects and scaling effects when downsizing sensors and actuators in microsystems are discussed, across a broad range of actuation

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.