N-Bromosuccinimide or NBS is a chemical reagent used in radical substitution, electrophilic addition, and electrophilic substitution reactions in organic chemistry. NBS can be a convenient source of Br•, the bromine radical. NBS is commercially available. It can also be synthesized in the laboratory. To do so, sodium hydroxide and bromine are added to an ice-water solution of succinimide. The NBS product precipitates and can be collected by filtration. Crude NBS gives better yield in the Wohl-Ziegler reaction. In other cases, impure NBS (slightly yellow in color) may give unreliable results. It can be purified by recrystallization from 90 to 95 °C water (10 g of NBS for 100 mL of water). NBS will react with alkenes 1 in aqueous solvents to give bromohydrins 2. The preferred conditions are the portionwise addition of NBS to a solution of the alkene in 50% aqueous DMSO, DME, THF, or tert-butanol at 0 °C. Formation of a bromonium ion and immediate attack by water gives strong Markovnikov addition and anti stereochemical selectivities. Side reactions include the formation of α-bromoketones and dibromo compounds. These can be minimized by the use of freshly recrystallized NBS. With the addition of nucleophiles, instead of water, various bifunctional alkanes can be synthesized. Standard conditions for using NBS in allylic and/or benzylic bromination involves refluxing a solution of NBS in anhydrous CCl4 with a radical initiator—usually azobisisobutyronitrile (AIBN) or benzoyl peroxide, irradiation, or both to effect radical initiation. The allylic and benzylic radical intermediates formed during this reaction are more stable than other carbon radicals and the major products are allylic and benzylic bromides. This is also called the Wohl–Ziegler reaction. The carbon tetrachloride must be maintained anhydrous throughout the reaction, as the presence of water may likely hydrolyze the desired product. Barium carbonate is often added to maintain anhydrous and acid-free conditions.
Paul Joseph Dyson, Mingyang Liu, Yelin Hu, Matthias Beller
Paul Joseph Dyson, Mingyang Liu, Xiang Li, Yelin Hu, Matthias Beller