Summary
Used in hydrogeology, the groundwater flow equation is the mathematical relationship which is used to describe the flow of groundwater through an aquifer. The transient flow of groundwater is described by a form of the diffusion equation, similar to that used in heat transfer to describe the flow of heat in a solid (heat conduction). The steady-state flow of groundwater is described by a form of the Laplace equation, which is a form of potential flow and has analogs in numerous fields. The groundwater flow equation is often derived for a small representative elemental volume (REV), where the properties of the medium are assumed to be effectively constant. A mass balance is done on the water flowing in and out of this small volume, the flux terms in the relationship being expressed in terms of head by using the constitutive equation called Darcy's law, which requires that the flow is laminar. Other approaches are based on Agent Based Models to incorporate the effect of complex aquifers such as karstic or fractured rocks (i.e. volcanic) A mass balance must be performed, and used along with Darcy's law, to arrive at the transient groundwater flow equation. This balance is analogous to the energy balance used in heat transfer to arrive at the heat equation. It is simply a statement of accounting, that for a given control volume, aside from sources or sinks, mass cannot be created or destroyed. The conservation of mass states that, for a given increment of time (Δt), the difference between the mass flowing in across the boundaries, the mass flowing out across the boundaries, and the sources within the volume, is the change in storage. Mass can be represented as density times volume, and under most conditions, water can be considered incompressible (density does not depend on pressure). The mass fluxes across the boundaries then become volume fluxes (as are found in Darcy's law).
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.