A flow net is a graphical representation of two-dimensional steady-state groundwater flow through aquifers.
Construction of a flow net is often used for solving groundwater flow problems where the geometry makes analytical solutions impractical. The method is often used in civil engineering, hydrogeology or soil mechanics as a first check for problems of flow under hydraulic structures like dams or sheet pile walls. As such, a grid obtained by drawing a series of equipotential lines is called a flow net. The flow net is an important tool in analysing two-dimensional irrotational flow problems. Flow net technique is a graphical representation method.
The method consists of filling the flow area with stream and equipotential lines, which are everywhere perpendicular to each other, making a curvilinear grid. Typically there are two surfaces (boundaries) which are at constant values of potential or hydraulic head (upstream and downstream ends), and the other surfaces are no-flow boundaries (i.e., impermeable; for example the bottom of the dam and the top of an impermeable bedrock layer), which define the sides of the outermost streamtubes (see figure 1 for a stereotypical flow net example).
Mathematically, the process of constructing a flow net consists of contouring the two harmonic or analytic functions of potential and stream function. These functions both satisfy the Laplace equation and the contour lines represent lines of constant head (equipotentials) and lines tangent to flowpaths (streamlines). Together, the potential function and the stream function form the complex potential, where the potential is the real part, and the stream function is the imaginary part.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Le cours donne les bases de la mécanique des sols et des écoulements souterrains. Il aborde les notions de caractérisation expérimentale des sols, les principales théories pour les relations constitut
Le cours est une introduction aux Sciences du sol. Il a pour but de présenter les principales caractéristiques, propriétés et fonctions des sols. Il fait appel à des notions théoriques mais également
The goal of this course is to introduce the student to modern numerical methods for the solution of coupled & non-linear problems arising in geo-mechanics / geotechnical engineering.
Used in hydrogeology, the groundwater flow equation is the mathematical relationship which is used to describe the flow of groundwater through an aquifer. The transient flow of groundwater is described by a form of the diffusion equation, similar to that used in heat transfer to describe the flow of heat in a solid (heat conduction). The steady-state flow of groundwater is described by a form of the Laplace equation, which is a form of potential flow and has analogs in numerous fields.
A well is an excavation or structure created in the ground by digging, driving, or drilling to access liquid resources, usually water. The oldest and most common kind of well is a water well, to access groundwater in underground aquifers. The well water is drawn up by a pump, or using containers, such as buckets or large water bags that are raised mechanically or by hand. Water can also be injected back into the aquifer through the well.
Seawater intrusion in island aquifers was considered analytically, specifically for annulus segment aquifers (ASAs), i.e., aquifers that (in plan) have the shape of an annulus segment. Based on the Ghijben–Herzberg and hillslope-storage Boussinesq equation ...
Surface-groundwater interactions in intermittent rivers and ephemeral streams (IRES), waterways which do not flow year-round, are spatially and temporally dynamic because of alternations between flowing, non-flowing and dry hydrological states. Interaction ...
Climate change will have both quantitative and qualitative effects on groundwater resources. These impacts differ for aquifers in solid and unconsolidated rock, in urban or rural locations, and in the principal processes of groundwater recharge. Having kno ...