Boolean algebra (structure)In abstract algebra, a Boolean algebra or Boolean lattice is a complemented distributive lattice. This type of algebraic structure captures essential properties of both set operations and logic operations. A Boolean algebra can be seen as a generalization of a power set algebra or a field of sets, or its elements can be viewed as generalized truth values. It is also a special case of a De Morgan algebra and a Kleene algebra (with involution).
Binomial (polynomial)In algebra, a binomial is a polynomial that is the sum of two terms, each of which is a monomial. It is the simplest kind of a sparse polynomial after the monomials. A binomial is a polynomial which is the sum of two monomials. A binomial in a single indeterminate (also known as a univariate binomial) can be written in the form where a and b are numbers, and m and n are distinct non-negative integers and x is a symbol which is called an indeterminate or, for historical reasons, a variable.
AryabhataAryabhata ( ISO: ) or Aryabhata I (476–550 CE) was the first of the major mathematician-astronomers from the classical age of Indian mathematics and Indian astronomy. His works include the Āryabhaṭīya (which mentions that in 3600 Kali Yuga, 499 CE, he was 23 years old) and the Arya-siddhanta. For his explicit mention of the relativity of motion, he also qualifies as a major early physicist.
Algebraic geometryAlgebraic geometry is a branch of mathematics which classically studies zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical problems about these sets of zeros. The fundamental objects of study in algebraic geometry are algebraic varieties, which are geometric manifestations of solutions of systems of polynomial equations.
Ring of symmetric functionsIn algebra and in particular in algebraic combinatorics, the ring of symmetric functions is a specific limit of the rings of symmetric polynomials in n indeterminates, as n goes to infinity. This ring serves as universal structure in which relations between symmetric polynomials can be expressed in a way independent of the number n of indeterminates (but its elements are neither polynomials nor functions). Among other things, this ring plays an important role in the representation theory of the symmetric group.
Mathematical structureIn mathematics, a structure is a set endowed with some additional features on the set (e.g. an operation, relation, metric, or topology). Often, the additional features are attached or related to the set, so as to provide it with some additional meaning or significance. A partial list of possible structures are measures, algebraic structures (groups, fields, etc.), topologies, metric structures (geometries), orders, events, equivalence relations, differential structures, and .
ArithmeticArithmetic () is an elementary part of mathematics that consists of the study of the properties of the traditional operations on numbers—addition, subtraction, multiplication, division, exponentiation, and extraction of roots. In the 19th century, Italian mathematician Giuseppe Peano formalized arithmetic with his Peano axioms, which are highly important to the field of mathematical logic today.
Inverse elementIn mathematics, the concept of an inverse element generalises the concepts of opposite (−x) and reciprocal (1/x) of numbers. Given an operation denoted here ∗, and an identity element denoted e, if x ∗ y = e, one says that x is a left inverse of y, and that y is a right inverse of x. (An identity element is an element such that x * e = x and e * y = y for all x and y for which the left-hand sides are defined.
Field extensionIn mathematics, particularly in algebra, a field extension is a pair of fields such that the operations of K are those of L restricted to K. In this case, L is an extension field of K and K is a subfield of L. For example, under the usual notions of addition and multiplication, the complex numbers are an extension field of the real numbers; the real numbers are a subfield of the complex numbers. Field extensions are fundamental in algebraic number theory, and in the study of polynomial roots through Galois theory, and are widely used in algebraic geometry.
Completing the squareIn elementary algebra, completing the square is a technique for converting a quadratic polynomial of the form to the form for some values of h and k. In other words, completing the square places a perfect square trinomial inside of a quadratic expression. Completing the square is used in solving quadratic equations, deriving the quadratic formula, graphing quadratic functions, evaluating integrals in calculus, such as Gaussian integrals with a linear term in the exponent, finding Laplace transforms.