**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# Field extension

Summary

In mathematics, particularly in algebra, a field extension is a pair of fields K\subseteq L, such that the operations of K are those of L restricted to K. In this case, L is an extension field of K and K is a subfield of L. For example, under the usual notions of addition and multiplication, the complex numbers are an extension field of the real numbers; the real numbers are a subfield of the complex numbers.
Field extensions are fundamental in algebraic number theory, and in the study of polynomial roots through Galois theory, and are widely used in algebraic geometry.
Subfield
A subfield K of a field L is a subset K\subseteq L that is a field with respect to the field operations inherited from L. Equivalently, a subfield is a subset that contains 1, and is closed under the operations of addition, subtraction, multiplication, and taking the inverse of a nonzero element of K.
As 1 –

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications

Loading

Related people

Loading

Related units

Loading

Related concepts

Loading

Related courses

Loading

Related lectures

Loading

Related publications (27)

Loading

Loading

Loading

Related people (1)

Related concepts (97)

Field (mathematics)

In mathematics, a field is a set on which addition, subtraction, multiplication, and division are defined and behave as the corresponding operations on rational and real numbers do. A field is thus

Ring (mathematics)

In mathematics, rings are algebraic structures that generalize fields: multiplication need not be commutative and multiplicative inverses need not exist. In other words, a ring is a set equipped wit

Complex number

In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted i, called the imaginary unit and satisfying the equation

Related courses (27)

MATH-494: Topics in arithmetic geometry

P-adic numbers are a number theoretic analogue of the real numbers, which interpolate between arithmetics, analysis and geometry. In this course we study their basic properties and give various applications, notably we will prove rationality of the Weil Zeta function.

MATH-310: Algebra

Study basic concepts of modern algebra: groups, rings, fields.

COM-401: Cryptography and security

This course introduces the basics of cryptography. We review several types of cryptographic primitives, when it is safe to use them and how to select the appropriate security parameters. We detail how they work and sketch how they can be implemented.

Related units (1)

Let K be a finite extension of Q(p), let L/K be a finite abelian Galois extension of odd degree and let D-L be the valuation ring of L. We define A(L/K) to be the unique fractional D-L-ideal with square equal to the inverse different of L/K. For p an odd prime and L/Q(p) contained in certain cyclotomic extensions, Erez has described integral normal bases for A(L)/Q(p) that are self-dual with respect to the trace form. Assuming K/Q(p) to be unramified we generate odd abelian weakly ramified extensions of K using Lubin-Tate formal groups. We then use Dwork's exponential power series to explicitly construct self-dual integral normal bases for the square-root of the inverse different in these extensions. (C) 2009 Elsevier Inc. All rights reserved.

2009A linear algebraic group G defined over a field k is called special if every G-torsor over every field extension of k is trivial. In 1958 Grothendieck classified special groups in the case where the base field is algebraically closed. In this paper we describe the derived subgroup and the coradical of a special reductive group over an arbitrary field k. We also classify special semisimple groups, special reductive groups of inner type, and special quasisplit reductive groups over an arbitrary field k. Finally, we give an application to a conjecture of Serre.

Let $F/E$ be a finite Galois extension of fields with abelian Galois group $\Gamma$. A self-dual normal basis for $F/E$ is a normal basis with the additional property that $Tr_{F/E}(g(x),h(x))=\delta_{g,h}$ for $g,h\in\Gamma$. Bayer-Fluckiger and Lenstra have shown that when $char(E)\neq 2$, then $F$ admits a self-dual normal basis if and only if $[F:E]$ is odd. If $F/E$ is an extension of finite fields and $char(E)=2$, then $F$ admits a self-dual normal basis if and only if the exponent of $\Gamma$ is not divisible by $4$. In this paper we construct self-dual normal basis generators for finite extensions of finite fields whenever they exist. Now let $K$ be a finite extension of $\Q_p$, let $L/K$ be a finite abelian Galois extension of odd degree and let $\bo_L$ be the valuation ring of $L$. We define $A_{L/K}$ to be the unique fractional $\bo_L$-ideal with square equal to the inverse different of $L/K$. It is known that a self-dual integral normal basis exists for $A_{L/K}$ if and only if $L/K$ is weakly ramified. Assuming $p\neq 2$, we construct such bases whenever they exist.

2010Related lectures (65)