A market anomaly in a financial market is predictability that seems to be inconsistent with (typically risk-based) theories of asset prices. Standard theories include the capital asset pricing model and the Fama-French Three Factor Model, but a lack of agreement among academics about the proper theory leads many to refer to anomalies without a reference to a benchmark theory (Daniel and Hirschleifer 2015 and Barberis 2018, for example). Indeed, many academics simply refer to anomalies as "return predictors", avoiding the problem of defining a benchmark theory.
Academics have documented more than 150 return predictors (see List of Anomalies Documented in Academic Journals). These "anomalies", however, come with many caveats. Almost all documented anomalies focus on illiquid, small stocks. Moreover, the studies do not account for trading costs. As a result, many anomalies do not offer profits, despite the presence of predictability. Additionally, return predictability declines substantially after the publication of a predictor, and thus may not offer profits in the future. Finally, return predictability may be due to cross-sectional or time-variation in risk, and thus does not necessarily provide a good investment opportunity. Relatedly, return predictability by itself does not disprove the efficient market hypothesis, as one needs to show predictability over and above that implied by a particular model of risk.
The four primary explanations for market anomalies are (1) mispricing, (2) unmeasured risk, (3) limits to arbitrage, and (4) selection bias. Academics have not reached a consensus on the underlying cause, with prominent academics continuing to advocate for selection bias, mispricing, and risk-based theories.
Anomalies can be broadly categorized into time-series and cross-sectional anomalies. Time-series anomalies refer to predictability in the aggregate stock market, such as the often-discussed Cyclically Adjusted Price-Earnings (CAPE) predictor.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This class is designed to give you an understanding of the basics of empirical asset pricing. This means that we will learn how to test asset pricing models and apply them mostly to stock markets. We
In finance, the capital asset pricing model (CAPM) is a model used to determine a theoretically appropriate required rate of return of an asset, to make decisions about adding assets to a well-diversified portfolio. The model takes into account the asset's sensitivity to non-diversifiable risk (also known as systematic risk or market risk), often represented by the quantity beta (β) in the financial industry, as well as the expected return of the market and the expected return of a theoretical risk-free asset.
The efficient-market hypothesis (EMH) is a hypothesis in financial economics that states that asset prices reflect all available information. A direct implication is that it is impossible to "beat the market" consistently on a risk-adjusted basis since market prices should only react to new information. Because the EMH is formulated in terms of risk adjustment, it only makes testable predictions when coupled with a particular model of risk.
Financial economics is the branch of economics characterized by a "concentration on monetary activities", in which "money of one type or another is likely to appear on both sides of a trade". Its concern is thus the interrelation of financial variables, such as share prices, interest rates and exchange rates, as opposed to those concerning the real economy. It has two main areas of focus: asset pricing and corporate finance; the first being the perspective of providers of capital, i.e.
Much of the extant literature predicts market returns with "simple" models that use only a few parameters. Contrary to conventional wisdom, we theoretically prove that simple models severely understate return predictability compared to "complex" models in ...
The COVID-19 pandemic has demonstrated the importance and value of multi-period asset allocation strategies responding to rapid changes in market behavior. In this article, we formulate and solve a multi-stage stochastic optimization problem, choosing the ...
This thesis examines predictability and seasonality in the cross-section of stock returns. The first chapter, titled ``Infrequent Rebalancing, Return Autocorrelation, and Seasonality,'' shows that a model of infrequent rebalancing can explain specific pred ...