An astronomical constant is any of several physical constants used in astronomy. Formal sets of constants, along with recommended values, have been defined by the International Astronomical Union (IAU) several times: in 1964 and in 1976 (with an update in 1994). In 2009 the IAU adopted a new current set, and recognizing that new observations and techniques continuously provide better values for these constants, they decided to not fix these values, but have the Working Group on Numerical Standards continuously maintain a set of Current Best Estimates. The set of constants is widely reproduced in publications such as the Astronomical Almanac of the United States Naval Observatory and HM Nautical Almanac Office.
Besides the IAU list of units and constants, also the International Earth Rotation and Reference Systems Service defines constants relevant to the orientation and rotation of the Earth, in its technical notes.
The IAU system of constants defines a system of astronomical units for length, mass and time (in fact, several such systems), and also includes constants such as the speed of light and the constant of gravitation which allow transformations between astronomical units and SI units. Slightly different values for the constants are obtained depending on the frame of reference used. Values quoted in barycentric dynamical time (TDB) or equivalent time scales such as the Teph of the Jet Propulsion Laboratory ephemerides represent the mean values that would be measured by an observer on the Earth's surface (strictly, on the surface of the geoid) over a long period of time. The IAU also recommends values in SI units, which are the values which would be measured (in proper length and proper time) by an observer at the barycentre of the Solar System: these are obtained by the following transformations:
Astronomical system of units
The astronomical unit of time is a time interval of one day (D) of 86400 seconds. The astronomical unit of mass is the mass of the Sun (S).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
A light-year, alternatively spelled light year, is a unit of length used to express astronomical distances and is equivalent to about 9.46 trillion kilometers (9.46e12km), or 5.88 trillion miles (5.88e12mi). As defined by the International Astronomical Union (IAU), a light-year is the distance that light travels in a vacuum in one Julian year (365.25 days). Because it includes the word "year", the term is sometimes misinterpreted as a unit of time.
The astronomical system of units, formerly called the IAU (1976) System of Astronomical Constants, is a system of measurement developed for use in astronomy. It was adopted by the International Astronomical Union (IAU) in 1976 via Resolution No. 1, and has been significantly updated in 1994 and 2009 (see astronomical constant). The system was developed because of the difficulties in measuring and expressing astronomical data in International System of Units (SI units).
The light-second is a unit of length useful in astronomy, telecommunications and relativistic physics. It is defined as the distance that light travels in free space in one second, and is equal to exactly 299 792 458 metres (approximately 983 571 055 ft). Just as the second forms the basis for other units of time, the light-second can form the basis for other units of length, ranging from the light-nanosecond (299.8mm or just under one international foot) to the light-minute, light-hour and light-day, which are sometimes used in popular science publications.
Covers astronomical units, light years, parallax, exoplanets, stars, nebulae, and galaxy clusters.
Compares the geocentric and heliocentric models of the universe proposed by Ptolemy and Copernicus.
Explores the transition from epicyclic curves to Kepler's ellipses and the Copernican revolution in astronomy.
Context. MWC158 is a star with the B[e] phenomenon that shows strong spectrophotometric variability (in lines and in UV and visible continuum) attributed to phases of shell ejection. The evolutionary stage of this star was never clearly determined. Previou ...
We present a method to recontruct temperature map directly from spectro-interferometric data. It uses a sparse coding method to describe each pixel as a blackbody. Results are shown on the Herbig Be HD98922. Aside from recovering the mean environment tempe ...
SPIE2016
Chemical zoning patterns in some iron, nickel metal grains from CH carbonaceous chondrites imply formation at temperatures from 1370 to 1270 kelvin by condensation from a solar nebular gas cooling at a rare of similar to 0.2 kelvin per hour. This cooling r ...