An astronomical constant is any of several physical constants used in astronomy. Formal sets of constants, along with recommended values, have been defined by the International Astronomical Union (IAU) several times: in 1964 and in 1976 (with an update in 1994). In 2009 the IAU adopted a new current set, and recognizing that new observations and techniques continuously provide better values for these constants, they decided to not fix these values, but have the Working Group on Numerical Standards continuously maintain a set of Current Best Estimates. The set of constants is widely reproduced in publications such as the Astronomical Almanac of the United States Naval Observatory and HM Nautical Almanac Office.
Besides the IAU list of units and constants, also the International Earth Rotation and Reference Systems Service defines constants relevant to the orientation and rotation of the Earth, in its technical notes.
The IAU system of constants defines a system of astronomical units for length, mass and time (in fact, several such systems), and also includes constants such as the speed of light and the constant of gravitation which allow transformations between astronomical units and SI units. Slightly different values for the constants are obtained depending on the frame of reference used. Values quoted in barycentric dynamical time (TDB) or equivalent time scales such as the Teph of the Jet Propulsion Laboratory ephemerides represent the mean values that would be measured by an observer on the Earth's surface (strictly, on the surface of the geoid) over a long period of time. The IAU also recommends values in SI units, which are the values which would be measured (in proper length and proper time) by an observer at the barycentre of the Solar System: these are obtained by the following transformations:
Astronomical system of units
The astronomical unit of time is a time interval of one day (D) of 86400 seconds. The astronomical unit of mass is the mass of the Sun (S).
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
vignette|redresse=1.5|Représentation centrée sur le Soleil d'une année-lumière (plus grande sphère, flèche jaune pour le rayon) et d'un mois-lumière (plus petite sphère) en comparaison des trajectoires de la grande comète de janvier 1910 (ligne jaune) et de la comète Hyakutake (ligne orange). L’année-lumière (de symbole « al ») est une unité de longueur utilisée en astronomie. Elle est égale à la distance parcourue par la lumière dans le vide pendant une année julienne, soit environ de kilomètres, soit encore, en ordre de grandeur, environ de kilomètres (), ou environ .
Le système astronomique d'unités, formellement nommé système de constantes astronomiques de l'Union astronomique internationale (UAI) de 1976 (en anglais IAU (1976) System of Astronomical Constants), est un système d'unités développé par l'UAI pour l'astronomie. Adopté par l'Union astronomique internationale (UAI) en 1976 et mis à jour de façon notable en 1994 et 2009 (voir ). Le système fut développé en raison des difficultés de mesurer et d'exprimer des données astronomiques dans le Système international d'unités (SI).
The light-second is a unit of length useful in astronomy, telecommunications and relativistic physics. It is defined as the distance that light travels in free space in one second, and is equal to exactly 299 792 458 metres (approximately 983 571 055 ft). Just as the second forms the basis for other units of time, the light-second can form the basis for other units of length, ranging from the light-nanosecond (299.8mm or just under one international foot) to the light-minute, light-hour and light-day, which are sometimes used in popular science publications.
Context. MWC158 is a star with the B[e] phenomenon that shows strong spectrophotometric variability (in lines and in UV and visible continuum) attributed to phases of shell ejection. The evolutionary stage of this star was never clearly determined. Previou ...
EDP Sciences2016
,
We present a method to recontruct temperature map directly from spectro-interferometric data. It uses a sparse coding method to describe each pixel as a blackbody. Results are shown on the Herbig Be HD98922. Aside from recovering the mean environment tempe ...
SPIE2016
Chemical zoning patterns in some iron, nickel metal grains from CH carbonaceous chondrites imply formation at temperatures from 1370 to 1270 kelvin by condensation from a solar nebular gas cooling at a rare of similar to 0.2 kelvin per hour. This cooling r ...