**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# Møller–Plesset perturbation theory

Summary

Møller–Plesset perturbation theory (MP) is one of several quantum chemistry post–Hartree–Fock ab initio methods in the field of computational chemistry. It improves on the Hartree–Fock method by adding electron correlation effects by means of Rayleigh–Schrödinger perturbation theory (RS-PT), usually to second (MP2), third (MP3) or fourth (MP4) order. Its main idea was published as early as 1934 by Christian Møller and Milton S. Plesset.
Perturbation theory (quantum mechanics)
The MP perturbation theory is a special case of RS perturbation theory. In RS theory one considers an unperturbed Hamiltonian operator , to which a small (often external) perturbation is added:
Here, λ is an arbitrary real parameter that controls the size of the perturbation. In MP theory the zeroth-order wave function is an exact eigenfunction of the Fock operator, which thus serves as the unperturbed operator. The perturbation is the correlation potential.
In RS-PT the perturbed wave function and perturbed energy are expressed as a power series in λ:
Substitution of these series into the time-independent Schrödinger equation gives a new equation as :
Equating the factors of in this equation gives a kth-order perturbation equation, where k = 0, 1, 2, ..., m. See perturbation theory for more details.
The MP-energy corrections are obtained from Rayleigh–Schrödinger (RS) perturbation theory with the unperturbed Hamiltonian defined as the shifted Fock operator,
and the perturbation defined as the correlation potential,
where the normalized Slater determinant Φ0 is the lowest eigenstate of the Fock operator:
Here N is the number of electrons in the molecule under consideration (a factor of 2 in the energy arises from the fact that each orbital is occupied by a pair of electrons with opposite spin), is the usual electronic Hamiltonian, is the one-electron Fock operator, and εi is the orbital energy belonging to the doubly occupied spatial orbital φi.
Since the Slater determinant Φ0 is an eigenstate of , it follows readily that
i.e.

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.