In differential geometry of curves, the osculating circle of a sufficiently smooth plane curve at a given point p on the curve has been traditionally defined as the circle passing through p and a pair of additional points on the curve infinitesimally close to p. Its center lies on the inner normal line, and its curvature defines the curvature of the given curve at that point. This circle, which is the one among all tangent circles at the given point that approaches the curve most tightly, was named circulus osculans (Latin for "kissing circle") by Leibniz. The center and radius of the osculating circle at a given point are called center of curvature and radius of curvature of the curve at that point. A geometric construction was described by Isaac Newton in his Principia: Imagine a car moving along a curved road on a vast flat plane. Suddenly, at one point along the road, the steering wheel locks in its present position. Thereafter, the car moves in a circle that "kisses" the road at the point of locking. The curvature of the circle is equal to that of the road at that point. That circle is the osculating circle of the road curve at that point. Curvature Let γ(s) be a regular parametric plane curve, where s is the arc length (the natural parameter). This determines the unit tangent vector T(s), the unit normal vector N(s), the signed curvature k(s) and the radius of curvature R(s) at each point for which s is composed: Suppose that P is a point on γ where k ≠ 0. The corresponding center of curvature is the point Q at distance R along N, in the same direction if k is positive and in the opposite direction if k is negative. The circle with center at Q and with radius R is called the osculating circle to the curve γ at the point P. If C is a regular space curve then the osculating circle is defined in a similar way, using the principal normal vector N. It lies in the osculating plane, the plane spanned by the tangent and principal normal vectors T and N at the point P.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (11)
MATH-189: Mathematics
Ce cours a pour but de donner les fondements de mathématiques nécessaires à l'architecte contemporain évoluant dans une école polytechnique.
EE-548: Audio engineering
This lecture is oriented towards the study of audio engineering, room acoustics, sound propagation, and sound radiation from sources and acoustic antennas. The learning outcomes will be the techniques
MATH-213: Differential geometry I - curves and surfaces
Ce cours est une introduction à la géométrie différentielle classique des courbes et des surfaces, principalement dans le plan et l'espace euclidien.
Show more
Related lectures (45)
Acoustic Simulation: Pulsating Sphere
Covers the simulation of acoustic waves in fluids using the Pressure Acoustics, Frequency Domain interface in COMSOL Multiphysics.
Geometrical Aspects of Differential Operators
Explores differential operators, regular curves, norms, and injective functions, addressing questions on curves' properties, norms, simplicity, and injectivity.
Geometric Quantities in Parameterized Curves
Explores parameterized curves, regularity, and geometric quantities like the carbide vector and curvature.
Show more
Related publications (26)

3D Smith chart constant quality factor semi-circles contours for positive and negative resistance circuits

Mihai Adrian Ionescu, Andrei Müller

The article firstly proves that the constant quality factor (Q) contours for passive circuits, while represented on a 2D Smith chart, form circle arcs on a coaxal circle family. Furthermore, these circle arcs represent semi-circles families in the north he ...
2020

Nonlinear buckling behavior of a complete spherical shell under uniform external pressure and homogenous natural curvature

Matteo Pezzulla

In this work, we consider the stability of a spherical shell under combined loading from a uniform external pressure and a homogenous natural curvature. Nonmechanical stimuli, such as one that tends to modify the rest curvature of an elastic body, are prev ...
AMER PHYSICAL SOC2020

ENHANCED GEOTHERMAL SYSTEMS (EGS) - NUMERICAL PREDICTION OF THE MODE AND LOCATION OF FRACTURE INITIATION

Mohamad Zaarour

Geo-energy is a comprehensive term used to describe any form of energy that comes from the Earth. This includes hydrocarbons such as gas, oil, and coal, but also geothermal energy (shallow and deep). The focus of this thesis is on Enhanced Geothermal Syste ...
2020
Show more
Related concepts (9)
Radius of curvature
In differential geometry, the radius of curvature (Rc), R, is the reciprocal of the curvature. For a curve, it equals the radius of the circular arc which best approximates the curve at that point. For surfaces, the radius of curvature is the radius of a circle that best fits a normal section or combinations thereof. In the case of a space curve, the radius of curvature is the length of the curvature vector. In the case of a plane curve, then R is the absolute value of where s is the arc length from a fixed point on the curve, φ is the tangential angle and κ is the curvature.
Differentiable curve
Differential geometry of curves is the branch of geometry that deals with smooth curves in the plane and the Euclidean space by methods of differential and integral calculus. Many specific curves have been thoroughly investigated using the synthetic approach. Differential geometry takes another path: curves are represented in a parametrized form, and their geometric properties and various quantities associated with them, such as the curvature and the arc length, are expressed via derivatives and integrals using vector calculus.
Arc length
Arc length is the distance between two points along a section of a curve. Determining the length of an irregular arc segment by approximating the arc segment as connected (straight) line segments is also called curve rectification. A rectifiable curve has a finite number of segments in its rectification (so the curve has a finite length). If a curve can be parameterized as an injective and continuously differentiable function (i.e., the derivative is a continuous function) , then the curve is rectifiable (i.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.