Résumé
droite|vignette|upright=1.3|Au point M de la courbe rouge, le cercle osculateur (en pointillés) approche mieux la courbe qu'un cercle tangent quelconque (passant par N). Son centre O et son rayon R sont le centre de courbure et le rayon de courbure de la courbe en M. En géométrie différentielle, le cercle osculateur ou cercle de courbure en un point d'une courbe est un objet permettant la description locale de cette courbe. Parmi les cercles passant par ce point, c'est celui qui « épouse cette courbe le mieux possible », donc mieux qu'un cercle tangent quelconque, d'où le nom de cercle osculateur (littéralement, « qui donne un baiser »). Le centre de ce cercle est appelé centre de courbure de la courbe au point M et son rayon, le rayon de courbure. Une courbe suffisamment régulière possède un cercle de courbure en tout point birégulier, c'est-à-dire en tout point pour lesquels les vecteurs vitesse et accélération sont non colinéaires. Il est possible de définir le cercle de courbure à partir de la courbure et des éléments du repère de Frenet, ou au contraire de donner une définition géométrique du cercle de courbure, et de définir à partir de lui la courbure. Défini de façon directe, le cercle de courbure est le cercle le plus proche de la courbe en M, c'est l'unique cercle "osculateur" à la courbe en ce point, c'est-à-dire ayant un contact avec elle d'ordre au moins deux. Ceci signifie qu'il constitue une très bonne approximation de la courbe, meilleure qu'un cercle tangent quelconque. En effet, il donne non seulement une idée de la direction dans laquelle la courbe avance (direction de la tangente), mais aussi de sa tendance à tourner de part ou d'autre de la tangente. Le cercle de courbure au point de paramètre t0 est aussi la limite, lorsque t et t' tendent vers t0, du cercle passant par les points de paramètre t , t, et t0, ou encore la limite, lorsque t tend vers t0, du cercle passant par les points de paramètre t et t0 et tangent à la courbe en t0 (voir les animations ci-dessous).
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.