In plasma physics, a lower hybrid oscillation is a longitudinal oscillation of ions and electrons in a magnetized plasma. The direction of propagation must be very nearly perpendicular to the stationary magnetic field, within about radians. Otherwise the electrons can move along the field lines fast enough to shield the oscillations in potential. The frequency of oscillation is
where Ωi is the ion cyclotron frequency, Ωe is the electron cyclotron frequency and ωpi is the ion plasma frequency. This is the lower hybrid frequency, so called because it is a "hybrid", or mixture, of two frequencies. There are also an upper hybrid frequency and upper hybrid oscillation.
The lower hybrid oscillation is unusual in that the ion and electron masses play an equally important role. This mode is relatively unimportant in practice because the necessary precise orientation relative to the magnetic field is seldom achieved. Exceptions are the use of lower hybrid waves to heat and drive current in fusion plasmas, and the lower hybrid drift instability, which was thought to be an important determinant of transport in the Field-Reversed Configuration (but was not found experimentally).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
In plasma physics, waves in plasmas are an interconnected set of particles and fields which propagate in a periodically repeating fashion. A plasma is a quasineutral, electrically conductive fluid. In the simplest case, it is composed of electrons and a single species of positive ions, but it may also contain multiple ion species including negative ions as well as neutral particles. Due to its electrical conductivity, a plasma couples to electric and magnetic fields. This complex of particles and fields supports a wide variety of wave phenomena.
Data produced by an electron cyclotron interferometer diagnostic are now available to the real-time control systems of of the joint European torus (JET) tokamak. The data consist of absolutely calibrated electron temperature profiles, covering the plasma l ...
A multi-machine study has been carried out to investigate the impact of a strongly bounded wave propagation domain on the Lower Hybrid current drive, a condition which occurs principally in high aspect ratio tokamaks. In this regime, the condition of kinet ...
Elastic vibrations in subwavelength structures have gained importance recently in fundamental light–matter studies and various optoacoustic applications. Existing techniques have revealed the presence of distinct acoustic resonances inside silica microwire ...