A woofer or bass speaker is a technical term for a loudspeaker driver designed to produce low frequency sounds, typically from 20 Hz up to 80 Hz. The name is from the onomatopoeic English word for a dog's bark, "woof" (in contrast to the name used for loudspeakers designed to reproduce high-frequency sounds, tweeter). The most common design for a woofer is the electrodynamic driver, which typically uses a stiff paper cone, driven by a voice coil surrounded by a magnetic field.
The voice coil is attached by adhesives to the back of the loudspeaker cone. The voice coil and the magnet form a linear electric motor. When current flows through the voice coil, the coil moves in relation to the frame according to Fleming's left hand rule for motors, causing the coil to push or pull on the driver cone in a piston-like way. The resulting motion of the cone creates sound waves, as it moves in and out.
At ordinary sound pressure levels (SPL), most humans can hear down to about 20 Hz. Woofers are generally used to cover the lowest octaves of a loudspeaker's frequency range. In two-way loudspeaker systems, the drivers handling the lower frequencies are also obliged to cover a substantial part of the midrange, often as high as 800 to 1000 Hz; such drivers are commonly termed mid woofers. Since the 1990s, a type of woofer (termed subwoofer), which is designed for very low frequencies only, has come to be commonly used in home theater systems and PA systems to augment the bass response; they usually handle the very lowest two or three octaves (i.e., from as low as 20 to 80 or 120 Hz).
Good woofer design requires effectively converting a low frequency amplifier signal to mechanical air movement with high fidelity and acceptable efficiency, and is both assisted and complicated by the necessity of using a loudspeaker enclosure to couple the cone motion to the air. If done well, many of the other problems of woofer design (for instance, linear excursion requirements) are reduced.
In most cases the woofer and its enclosure must be designed to work together.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This lecture is oriented towards the study of audio engineering, with a special focus on room acoustics applications. The learning outcomes will be the techniques for microphones and loudspeaker desig
Ce cours a pour objectif de former les étudiants de section Génie Electrique et Electronique à la conception de systèmes acoustiques, à l'aide d'un formalisme basé sur l'électrotechnique. A la fin du
A sound reinforcement system is the combination of microphones, signal processors, amplifiers, and loudspeakers in enclosures all controlled by a mixing console that makes live or pre-recorded sounds louder and may also distribute those sounds to a larger or more distant audience. In many situations, a sound reinforcement system is also used to enhance or alter the sound of the sources on the stage, typically by using electronic effects, such as reverb, as opposed to simply amplifying the sources unaltered.
Audio crossovers are a type of electronic filter circuitry that splits an audio signal into two or more frequency ranges, so that the signals can be sent to loudspeaker drivers that are designed to operate within different frequency ranges. The crossover filters can be either active or passive. They are often described as two-way or three-way, which indicate, respectively, that the crossover splits a given signal into two frequency ranges or three frequency ranges.
An electrodynamic speaker driver, often called simply a speaker driver when the type is implicit, is an individual transducer that converts an electrical audio signal to sound waves. While the term is sometimes used interchangeably with the term speaker (loudspeaker), it is usually applied to specialized transducers which reproduce only a portion of the audible frequency range. For high fidelity reproduction of sound, multiple loudspeakers are often mounted in the same enclosure, each reproducing a different part of the audible frequency range.
Environmental noise, mostly related to human activities, has an immense impact on public health. The development of noise reduction technologies is paramount in addressing this problem. Because of practical and economic reasons, a compact, broadband, light ...
This paper presents an acoustic impedance control architecture for an electroacoustic absorber combining both feedforward and feedback microphone-based strategies on a current-driven loudspeaker. Feedforward systems enable good performance for direct imped ...
The extensive deployment of non-synchronous generation determines lower level of grid inertia resulting in deteriorated frequency containment performance and abnormal frequency excursions in case of contingency. This calls for identifying assets, controls, ...