Vibronic coupling (also called nonadiabatic coupling or derivative coupling) in a molecule involves the interaction between electronic and nuclear vibrational motion. The term "vibronic" originates from the combination of the terms "vibrational" and "electronic", denoting the idea that in a molecule, vibrational and electronic interactions are interrelated and influence each other. The magnitude of vibronic coupling reflects the degree of such interrelation.
In theoretical chemistry, the vibronic coupling is neglected within the Born–Oppenheimer approximation. Vibronic couplings are crucial to the understanding of nonadiabatic processes, especially near points of conical intersections. The direct calculation of vibronic couplings used to be uncommon due to difficulties associated with its evaluation, but has recently gained popularity due to increased interest in the quantitative prediction of internal conversion rates, as well as the development of cheap but rigorous ways to analytically calculate the vibronic couplings, especially at the TDDFT level.
Vibronic coupling describes the mixing of different electronic states as a result of small vibrations.
The evaluation of vibronic coupling often involves complex mathematical treatment.
The form of vibronic coupling is essentially the derivative of the wave function. Each component of the vibronic coupling vector can be calculated with numerical differentiation methods using wave functions at displaced geometries. This is the procedure used in MOLPRO.
First order accuracy can be achieved with forward difference formula:
Second order accuracy can be achieved with central difference formula:
Here, is a unit vector along direction . is the transition density between the two electronic states.
Evaluation of electronic wave functions for both electronic states are required at N displacement geometries for first order accuracy and 2*N displacements to achieve second order accuracy, where N is the number of nuclear degrees of freedom. This can be extremely computationally demanding for large molecules.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course will introduce students to the field of organic electronic materials. The goal of this course is to discuss the origin of electronic properties in organic materials, charge transport mecha
In quantum chemistry, a conical intersection of two or more potential energy surfaces is the set of molecular geometry points where the potential energy surfaces are degenerate (intersect) and the non-adiabatic couplings between these states are non-vanishing. In the vicinity of conical intersections, the Born–Oppenheimer approximation breaks down and the coupling between electronic and nuclear motion becomes important, allowing non-adiabatic processes to take place.
In chemistry, a molecular orbital (ɒrbədl) is a mathematical function describing the location and wave-like behavior of an electron in a molecule. This function can be used to calculate chemical and physical properties such as the probability of finding an electron in any specific region. The terms atomic orbital and molecular orbital were introduced by Robert S. Mulliken in 1932 to mean one-electron orbital wave functions. At an elementary level, they are used to describe the region of space in which a function has a significant amplitude.
Quantum chemistry, also called molecular quantum mechanics, is a branch of physical chemistry focused on the application of quantum mechanics to chemical systems, particularly towards the quantum-mechanical calculation of electronic contributions to physical and chemical properties of molecules, materials, and solutions at the atomic level. These calculations include systematically applied approximations intended to make calculations computationally feasible while still capturing as much information about important contributions to the computed wave functions as well as to observable properties such as structures, spectra, and thermodynamic properties.
Accurate simulations of molecular quantum dynamics are crucial for understanding numerous natural processes and experimental results. Yet, such high-accuracy simulations are challenging even for relatively simple systems where the Born-Oppenheimer approxim ...
Diabatization of the molecular Hamiltonian is a standard approach to remove the singularities of nonadiabatic couplings at conical intersections of adiabatic potential energy surfaces. In general, it is impossible to eliminate the nonadiabatic couplings en ...
In this study, a series of donor-acceptor-donor (D-A-D) type small molecules based on the fluorene and diphenylethenyl enamine units, which are distinguished by different acceptors, as holetransporting materials (HTMs) for perovskite solar cells is present ...