En chimie théorique, les termes de couplage vibronique (pour des molécules discrètes) ou de couplage électron-phonon (pour des cristaux ou des objets bi- ou tridimensionnels), négligés dans l'approximation de Born-Oppenheimer, sont proportionnels à l'interaction entre les mouvements électroniques et nucléaires des objets chimiques. Le terme « vibronique » provient de la concaténation des termes et « électronique ». Le mot couplage dénote l'idée que dans un objet chimie, les états vibrationnels (ou phonons) et électroniques interagissent et s'influencent réciproquement. Le couplage est parfois qualifié d' effet pseudo-Jahn-Teller, en raison de sa proximité conceptuelle avec l'effet Jahn-Teller, bien connu par ailleurs. Le couplage vibronique / électron-phonon est important lorsque deux surfaces d'énergie potentielle adiabatiques deviennent proches l'une de l'autre, c'est-à-dire lorsque la différence d'énergie entre elles est de l'ordre de grandeur d'un quantum d'oscillation. Cela se produit habituellement dans le voisinage d'un croisement évité de surfaces d'énergie potentielle correspondant à des états électroniques distincts pour la même symétrie spatiale et de spin. Cependant, le couplage existe aussi aux croisements réels. Dans le cas d'un processus adiabatique ou de l'approximation de Born-Oppenheimer ne sont pas valables et les termes non-adiabatiques (appelés donc termes de couplage vibronique ou électron-phonon) doivent être pris en compte. Les termes de couplage vibronique sont habituellement difficiles à évaluer, étant proportionnels aux dérivées première et seconde de la fonction d'onde électronique en fonction des coordonnées moléculaires. Une voie plus simple de résolution de ce problème est de basculer d'une représentation adiabatique à une représentation diabatique des surfaces d'énergie potentielle. Les termes vibroniques sont responsables par exemple du saut de surface ou de la phase de Berry. Le couplage vibronique devient infinie au voisinage d'une intersection conique.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (1)
MSE-486: Organic electronic materials
This course will introduce students to the field of organic electronic materials. The goal of this course is to discuss the origin of electronic properties in organic materials, charge transport mecha
Concepts associés (3)
Intersection conique
thumb|Intersection conique idéale entre deux surfaces d'énergie potentielle. Les axes horizontaux représentent les positions nucléaires, l'axe vertical est l'énergie des deux états possibles. En chimie quantique, une intersection conique de deux surfaces d'énergie potentielle (SEP) de mêmes symétries spatiales et de spin est l'ensemble des points géométriques où deux SEP sont dégénérées (se croisent). Les intersections coniques se rencontrent dans tous les systèmes chimiques triviaux et non triviaux.
Orbitale moléculaire
vignette|Orbitales moléculaires du 1,3-butadiène, montrant les deux orbitales occupées à l'état fondamental : π est liante entre tous les atomes, tandis que π n'est liante qu'entre les atomes C et C ainsi qu'entre les atomes C et C, et est antiliante entre C et C. En chimie quantique, une orbitale moléculaire est une fonction mathématique décrivant le comportement ondulatoire d'un électron dans une molécule.
Chimie quantique
La chimie quantique est une branche de la chimie théorique qui applique la mécanique quantique aux systèmes moléculaires pour étudier les processus et les propriétés chimiques. Le comportement électronique et nucléaire des molécules étant responsable des propriétés chimiques, il ne peut être décrit adéquatement qu'à partir de l'équation du mouvement quantique (équation de Schrödinger) et des autres postulats fondamentaux de la mécanique quantique. Cette nécessité a motivé le développement de concepts (notamment orbitale moléculaire.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.