Renewal theory is the branch of probability theory that generalizes the Poisson process for arbitrary holding times. Instead of exponentially distributed holding times, a renewal process may have any independent and identically distributed (IID) holding times that have finite mean. A renewal-reward process additionally has a random sequence of rewards incurred at each holding time, which are IID but need not be independent of the holding times.
A renewal process has asymptotic properties analogous to the strong law of large numbers and central limit theorem. The renewal function (expected number of arrivals) and reward function (expected reward value) are of key importance in renewal theory. The renewal function satisfies a recursive integral equation, the renewal equation. The key renewal equation gives the limiting value of the convolution of with a suitable non-negative function. The superposition of renewal processes can be studied as a special case of Markov renewal processes.
Applications include calculating the best strategy for replacing worn-out machinery in a factory and comparing the long-term benefits of different insurance policies. The inspection paradox relates to the fact that observing a renewal interval at time t gives an interval with average value larger than that of an average renewal interval.
The renewal process is a generalization of the Poisson process. In essence, the Poisson process is a continuous-time Markov process on the positive integers (usually starting at zero) which has independent exponentially distributed holding times at each integer before advancing to the next integer, . In a renewal process, the holding times need not have an exponential distribution; rather, the holding times may have any distribution on the positive numbers, so long as the holding times are independent and identically distributed (IID) and have finite mean.
Let be a sequence of positive independent identically distributed random variables with finite expected value
We refer to the random variable as the "-th holding time".
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Le cours est une introduction à la théorie des valeurs extrêmes et son utilisation pour la gestion des risques hydrologiques (essentiellement crues). Une ouverture plus large sur la gestion des danger
In this course we study mathematical models of neurons and neuronal networks in the context of biology and establish links to models of cognition. The focus is on brain dynamics approximated by determ
In probability, statistics and related fields, a Poisson point process is a type of random mathematical object that consists of points randomly located on a mathematical space with the essential feature that the points occur independently of one another. The Poisson point process is often called simply the Poisson process, but it is also called a Poisson random measure, Poisson random point field or Poisson point field.
In probability theory and statistics, the Poisson distribution is a discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time or space if these events occur with a known constant mean rate and independently of the time since the last event. It is named after French mathematician Siméon Denis Poisson ('pwɑːsɒn; pwasɔ̃). The Poisson distribution can also be used for the number of events in other specified interval types such as distance, area, or volume.
Queueing theory is the mathematical study of waiting lines, or queues. A queueing model is constructed so that queue lengths and waiting time can be predicted. Queueing theory is generally considered a branch of operations research because the results are often used when making business decisions about the resources needed to provide a service. Queueing theory has its origins in research by Agner Krarup Erlang, who created models to describe the system of incoming calls at the Copenhagen Telephone Exchange Company.
Covers the properties and construction of Poisson processes from i.i.d. Exp(X) random variables, emphasizing the importance of the process rate and jump time distributions.
How does reliable computation emerge from networks of noisy neurons? While individual neurons are intrinsically noisy, the collective dynamics of populations of neurons taken as a whole can be almost deterministic, supporting the hypothesis that, in the br ...
EPFL2022
Correct prediction of particle transport by surface waves is crucial in many practical applications such as search and rescue or salvage operations and pollution tracking and clean-up efforts. Recent results by Deike et al. (J. Fluid Mech., vol. 829, 2017, ...
Cambridge2023
The RIde-hail VEhicle Routing (RIVER) problem describes how drivers in a ride-hail market form a dynamic routing strategy according to the expected reward in each zone of the market. We model this decision-making problem as a Markov decision process (MDP), ...