An orbital ring is a concept of an artificial ring placed around a body and set rotating at such a rate that the apparent centrifugal force is large enough to counteract the force of gravity. For the Earth, the required speed is on the order of 10 km/sec, compared to a typical low Earth orbit velocity of 8 km/sec. The structure is intended to be used as a space station or as a planetary vehicle for very high-speed transportation or space launch.
Because the cable is spinning faster than orbital velocity, there is a net outward force that is countered by internal tension within the cable. This resists any attempt to bend it and allows it to carry loads. In typical conceptions, a motorized platform is placed on the cable that runs in the opposite direction at the speed that makes it appear stationary above the ground. Above Earth's equator, a platform running at 9.5 km/sec in the direction opposite the cable will appear stationary and allow a cable to be lowered to form a space elevator. This elevator is only perhaps long, which can be built with existing materials.
The requirement to construct a planet-sized cable in low-earth orbit and accelerate it to a faster-than-orbital velocity is an obvious practical problem. Other architectures have thus been proposed that use active support in different ways and are thus able to circumvent some of these limitations. The launch loop is a partial ring, perhaps 2000 km long, that runs between two ground stations instead of encircling the world. The particle ring uses a series of separate objects that can be launched individually to produce a collection similar to a solid ring and then controlled magnetically, with the disadvantage that they have no internal tension and lifting power is derived separately. The space fountain is a vertical version of the particle ring concept that forms a space elevator. The tethered ring is a dynamic structure that uses at least one complete and continuous non-orbiting ring with a diameter that is smaller than that of the planetary body.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Non-rocket spacelaunch refers to theoretical concepts for launch into space where much of the speed and altitude needed to achieve orbit is provided by a propulsion technique that is not subject to the limits of the rocket equation. Although all space launches to date have been rockets, a number of alternatives to rockets have been proposed. In some systems, such as a combination launch system, skyhook, rocket sled launch, rockoon, or air launch, a portion of the total delta-v may be provided, either directly or indirectly, by using rocket propulsion.
Space tethers are long cables which can be used for propulsion, momentum exchange, stabilization and attitude control, or maintaining the relative positions of the components of a large dispersed satellite/spacecraft sensor system. Depending on the mission objectives and altitude, spaceflight using this form of spacecraft propulsion is theorized to be significantly less expensive than spaceflight using rocket engines. Tether satellites might be used for various purposes, including research into tether propulsion, tidal stabilization and orbital plasma dynamics.
A launch loop, or Lofstrom loop, is a proposed system for launching objects into orbit using a moving cable-like system situated inside a sheath attached to the Earth at two ends and suspended above the atmosphere in the middle. The design concept was published by Keith Lofstrom and describes an active structure maglev cable transport system that would be around 2,000 km (1,240 mi) long and maintained at an altitude of up to 80 km (50 mi). A launch loop would be held up at this altitude by the momentum of a belt that circulates around the structure.