Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Viability and invariance problems related to a stochastic equation in a Hilbert space H are studied. Finite dimensional invariant C2 submanifolds of H are characterized. We derive Nagumo type conditions and prove a regularity result: Any weak solution, whi ...
This chapter contains an introduction to triangle comparison theorems and it is proved that the fundamental group of a compact Riemannian manifold with negative sectional curvature is hyperbolic. ...
The goal of this paper is to give an explicit analysis of the geodesic flow on the three dimensional Lie group SOL. In particular we describe its horizon. (The horizon of a riemannian manifold is a topological space parametrizing the asymptotic classes of ...
In this paper, we prove that if f is a conformal map between two Riemannian surfaces, and if the curvature of the target is nonpositive and less than or equal to the curvature of the source, then the map is contracting. ...
The growth of a planar crack through a heterogeneous brittle material is investigated using a discrete cubic lattice of springs with distributed spring toughnesses and lattice Green's functions to determine crack propagation. The toughness, or stress requi ...
We study conditions under which a point of a Riemannian surface has a neighborhood that can be parametrized by polar coordinates. The point under investigation can be a regular point or a conical singularity. We also study the regularity of these polar coo ...
In this article, we study the problem (sometimes called the Berger-Nirenberg problem) of prescribing the curvature on a Riemann surface (that is on an oriented surface equipped with a conformal class of Riemannian metrics). ...