SfermionIn supersymmetric extension to the Standard Model (SM) of physics, a sfermion is a hypothetical spin-0 superpartner particle (sparticle) of its associated fermion. Each particle has a superpartner with spin that differs by 1/2. Fermions in the SM have spin-1/2 and, therefore, sfermions have spin 0. The name 'sfermion' was formed by the general rule of prefixing an 's' to the name of its superpartner, denoting that it is a scalar particle with spin 0. For instance, the electron's superpartner is the selectron and the top quark's superpartner is the stop squark.
Selection ruleIn physics and chemistry, a selection rule, or transition rule, formally constrains the possible transitions of a system from one quantum state to another. Selection rules have been derived for electromagnetic transitions in molecules, in atoms, in atomic nuclei, and so on. The selection rules may differ according to the technique used to observe the transition. The selection rule also plays a role in chemical reactions, where some are formally spin-forbidden reactions, that is, reactions where the spin state changes at least once from reactants to products.
Vacuum polarizationIn quantum field theory, and specifically quantum electrodynamics, vacuum polarization describes a process in which a background electromagnetic field produces virtual electron–positron pairs that change the distribution of charges and currents that generated the original electromagnetic field. It is also sometimes referred to as the self-energy of the gauge boson (photon). After developments in radar equipment for World War II resulted in higher accuracy for measuring the energy levels of the hydrogen atom, I.
Spin angular momentum of lightThe spin angular momentum of light (SAM) is the component of angular momentum of light that is associated with the quantum spin and the rotation between the polarization degrees of freedom of the photon. Spin is the fundamental property that distinguishes the two types of elementary particles: fermions with half-integer spins and bosons with integer spins. Photons, which are the quanta of light, have been long recognized as spin-1 gauge bosons. The polarization of the light is commonly accepted as its “intrinsic” spin degree of freedom.
Nucleon magnetic momentThe nucleon magnetic moments are the intrinsic magnetic dipole moments of the proton and neutron, symbols μp and μn. The nucleus of an atom comprises protons and neutrons, both nucleons that behave as small magnets. Their magnetic strengths are measured by their magnetic moments. The nucleons interact with normal matter through either the nuclear force or their magnetic moments, with the charged proton also interacting by the Coulomb force. The proton's magnetic moment, surprisingly large, was directly measured in 1933 by Otto Stern team in University of Hamburg.
Rabi cycleIn physics, the Rabi cycle (or Rabi flop) is the cyclic behaviour of a two-level quantum system in the presence of an oscillatory driving field. A great variety of physical processes belonging to the areas of quantum computing, condensed matter, atomic and molecular physics, and nuclear and particle physics can be conveniently studied in terms of two-level quantum mechanical systems, and exhibit Rabi flopping when coupled to an optical driving field.
Relativistic angular momentumIn physics, relativistic angular momentum refers to the mathematical formalisms and physical concepts that define angular momentum in special relativity (SR) and general relativity (GR). The relativistic quantity is subtly different from the three-dimensional quantity in classical mechanics. Angular momentum is an important dynamical quantity derived from position and momentum. It is a measure of an object's rotational motion and resistance to changes in its rotation.
Topological orderIn physics, topological order is a kind of order in the zero-temperature phase of matter (also known as quantum matter). Macroscopically, topological order is defined and described by robust ground state degeneracy and quantized non-Abelian geometric phases of degenerate ground states. Microscopically, topological orders correspond to patterns of long-range quantum entanglement. States with different topological orders (or different patterns of long range entanglements) cannot change into each other without a phase transition.