In mathematics, particularly in linear algebra, tensor analysis, and differential geometry, the Levi-Civita symbol or Levi-Civita epsilon represents a collection of numbers; defined from the sign of a permutation of the natural numbers 1, 2, ..., n, for some positive integer n. It is named after the Italian mathematician and physicist Tullio Levi-Civita. Other names include the permutation symbol, antisymmetric symbol, or alternating symbol, which refer to its antisymmetric property and definition in terms of permutations. The standard letters to denote the Levi-Civita symbol are the Greek lower case epsilon ε or ε, or less commonly the Latin lower case e. Index notation allows one to display permutations in a way compatible with tensor analysis: where each index i1, i2, ..., in takes values 1, 2, ..., n. There are nn indexed values of εi1i2...in, which can be arranged into an n-dimensional array. The key defining property of the symbol is total antisymmetry in the indices. When any two indices are interchanged, equal or not, the symbol is negated: If any two indices are equal, the symbol is zero. When all indices are unequal, we have: where p (called the parity of the permutation) is the number of pairwise interchanges of indices necessary to unscramble i1, i2, ..., in into the order 1, 2, ..., n, and the factor (−1)p is called the sign, or signature of the permutation. The value ε1 2 ... n must be defined, else the particular values of the symbol for all permutations are indeterminate. Most authors choose ε1 2 ... n = +1, which means the Levi-Civita symbol equals the sign of a permutation when the indices are all unequal. This choice is used throughout this article. The term "n-dimensional Levi-Civita symbol" refers to the fact that the number of indices on the symbol n matches the dimensionality of the vector space in question, which may be Euclidean or non-Euclidean, for example, or Minkowski space. The values of the Levi-Civita symbol are independent of any metric tensor and coordinate system.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (7)
PHYS-427: Relativity and cosmology I
Introduce the students to general relativity and its classical tests.
PHYS-324: Classical electrodynamics
The goal of this course is the study of the physical and conceptual consequences of Maxwell equations.
ME-201: Continuum mechanics
Continuum conservation laws (e.g. mass, momentum and energy) will be introduced. Mathematical tools, including basic algebra and calculus of vectors and Cartesian tensors will be taught. Stress and de
Show more
Related lectures (30)
Mathematical Basics: Index Notation and Tensors
Covers index notation basics and introduces tensors and their transformations.
Maxwell Equations and Minkowski Spacetime
Explores Maxwell equations, Minkowski spacetime, Lorentz transformations, charge conservation, and spacetime structure in physics.
Relativity and Cosmology: Introduction
Introduces the concepts of relativity and cosmology, covering the Big Bang Theory, general relativity, and statistical physics.
Show more
Related publications (16)

Lie groups in the symmetric group: Reducing Ulam's problem to the simple case

Nicolas Monod

Ulam asked whether all Lie groups can be represented faithfully on a countable set. We establish a reduction of Ulam's problem to the case of simple Lie groups. In particular, we solve the problem for all solvable Lie groups and more generally Lie groups w ...
San Diego2023

Mutual information for low-rank even-order symmetric tensor estimation

Nicolas Macris, Jean François Emmanuel Barbier, Clément Dominique Luneau

We consider a statistical model for finite-rank symmetric tensor factorization and prove a single-letter variational expression for its asymptotic mutual information when the tensor is of even order. The proof applies the adaptive interpolation method orig ...
OXFORD UNIV PRESS2021

Mutual Information for Low-Rank Even-Order Symmetric Tensor Factorization

Nicolas Macris, Jean François Emmanuel Barbier, Clément Dominique Luneau

We consider a statistical model for finite-rank symmetric tensor factorization and prove a single-letter variational expression for its mutual information when the tensor is of even order. The proof uses the adaptive interpolation method, for which rank-on ...
IEEE2019
Show more
Related concepts (21)
Ricci calculus
In mathematics, Ricci calculus constitutes the rules of index notation and manipulation for tensors and tensor fields on a differentiable manifold, with or without a metric tensor or connection. It is also the modern name for what used to be called the absolute differential calculus (the foundation of tensor calculus), developed by Gregorio Ricci-Curbastro in 1887–1896, and subsequently popularized in a paper written with his pupil Tullio Levi-Civita in 1900.
Curvilinear coordinates
In geometry, curvilinear coordinates are a coordinate system for Euclidean space in which the coordinate lines may be curved. These coordinates may be derived from a set of Cartesian coordinates by using a transformation that is locally invertible (a one-to-one map) at each point. This means that one can convert a point given in a Cartesian coordinate system to its curvilinear coordinates and back. The name curvilinear coordinates, coined by the French mathematician Lamé, derives from the fact that the coordinate surfaces of the curvilinear systems are curved.
Minkowski space
In mathematical physics, Minkowski space (or Minkowski spacetime) (mɪŋˈkɔːfski,_-ˈkɒf-) combines inertial space and time manifolds (x,y) with a non-inertial reference frame of space and time (x',t') into a four-dimensional model relating a position (inertial frame of reference) to the field (physics). A four-vector (x,y,z,t) consists of a coordinate axes such as a Euclidean space plus time. This may be used with the non-inertial frame to illustrate specifics of motion, but should not be confused with the spacetime model generally.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.