**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Mutual information for low-rank even-order symmetric tensor estimation

Abstract

We consider a statistical model for finite-rank symmetric tensor factorization and prove a single-letter variational expression for its asymptotic mutual information when the tensor is of even order. The proof applies the adaptive interpolation method originally invented for rank-one factorization. Here we show how to extend the adaptive interpolation to finite-rank and even-order tensors. This requires new non-trivial ideas with respect to the current analysis in the literature. We also underline where the proof falls short when dealing with odd-order tensors.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications (1)

Related concepts (4)

Mutual information

In probability theory and information theory, the mutual information (MI) of two random variables is a measure of the mutual dependence between the two variables. More specifically, it quantifies the "amount of information" (in units such as shannons (bits), nats or hartleys) obtained about one random variable by observing the other random variable. The concept of mutual information is intimately linked to that of entropy of a random variable, a fundamental notion in information theory that quantifies the expected "amount of information" held in a random variable.

Tensor

In mathematics, a tensor is an algebraic object that describes a multilinear relationship between sets of algebraic objects related to a vector space. Tensors may map between different objects such as vectors, scalars, and even other tensors. There are many types of tensors, including scalars and vectors (which are the simplest tensors), dual vectors, multilinear maps between vector spaces, and even some operations such as the dot product.

Statistical model

A statistical model is a mathematical model that embodies a set of statistical assumptions concerning the generation of sample data (and similar data from a larger population). A statistical model represents, often in considerably idealized form, the data-generating process. When referring specifically to probabilities, the corresponding term is probabilistic model. A statistical model is usually specified as a mathematical relationship between one or more random variables and other non-random variables.

Nicolas Macris, Jean François Emmanuel Barbier, Clément Dominique Luneau

We consider a statistical model for finite-rank symmetric tensor factorization and prove a single-letter variational expression for its mutual information when the tensor is of even order. The proof uses the adaptive interpolation method, for which rank-one matrix factorization is one of the first problems to which it was successfully applied. We show how to extend the adaptive interpolation to finite-rank symmetric tensors of even order, which requires new ideas with respect to the proof for the rank-one case. We also underline where the proof falls short when dealing with odd-order tensors.