Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Plasma turbulence plays a fundamental role in determining the performances of magnetic confinement fusion devices, such as tokamaks. Advances in computer science, combined with the development of efficient physical models, have significantly improved our u ...
We present a convergence study of the gyromoment (GM) approach, which is based on projecting the gyrokinetic distribution function onto a Hermite–Laguerre polynomial basis, focused on the cyclone base case (CBC) (Lin et al., Phys. Rev. Lett., vol. 83, no. ...
The celebrated PCP Theorem states that any language in NP can be decided via a verifier that reads O(1) bits from a polynomially long proof. Interactive oracle proofs (IOP), a generalization of PCPs, allow the verifier to interact with the prover for multi ...
The goal of this paper is to characterize function distributions that general neural networks trained by descent algorithms (GD/SGD), can or cannot learn in polytime. The results are: (1) The paradigm of general neural networks trained by SGD is poly-time ...
WILEY2023
We study the existence, uniqueness, and regularity of the solution to the stochastic reaction-diffusion equation (SRDE) with colored noise F-center dot:partial derivative(t)u = aijuxixj +biuxi + cu - bu1+beta +xi u1+gamma F-center dot, (t, x) is ...
San Diego2023
We study three convolutions of polynomials in the context of free probability theory. We prove that these convolutions can be written as the expected characteristic polynomials of sums and products of unitarily invariant random matrices. The symmetric addi ...
Polynomial neural networks (PNNs) have been recently shown to be particularly effective at image generation and face recognition, where high-frequency information is critical. Previous studies have revealed that neural networks demonstrate a spectral bias ...
Deep heteroscedastic regression involves jointly optimizing the mean and covariance of the predicted distribution using the negative log-likelihood. However, recent works show that this may result in sub-optimal convergence due to the challenges associated ...
We generalize the hidden-fermion family of neural network quantum states to encompass both continuous and discrete degrees of freedom and solve the nuclear many-body Schrodinger equation in a systematically improvable fashion. We demonstrate that adding hi ...
This thesis evaluates the effects of the position of the concrete core and its stiffness on the horizontal deformation of a multi-storey timber-concrete hybrid building. As part of the evaluation a calculation method with polynomial functions was derived t ...