Cosmological horizonA cosmological horizon is a measure of the distance from which one could possibly retrieve information. This observable constraint is due to various properties of general relativity, the expanding universe, and the physics of Big Bang cosmology. Cosmological horizons set the size and scale of the observable universe. This article explains a number of these horizons. Particle horizon The particle horizon (also called the cosmological horizon, the comoving horizon, or the cosmic light horizon) is the maximum distance from which light from particles could have traveled to the observer in the age of the universe.
InflatonThe inflaton field is a hypothetical scalar field which is conjectured to have driven cosmic inflation in the very early universe. The field, originally postulated by Alan Guth, provides a mechanism by which a period of rapid expansion from 10−35 to 10−34 seconds after the initial expansion can be generated, forming a universe consistent with observed spatial isotropy and homogeneity.
Big BangThe Big Bang event is a physical theory that describes how the universe expanded from an initial state of high density and temperature. Various cosmological models of the Big Bang explain the evolution of the observable universe from the earliest known periods through its subsequent large-scale form. These models offer a comprehensive explanation for a broad range of observed phenomena, including the abundance of light elements, the cosmic microwave background (CMB) radiation, and large-scale structure.
Faster-than-lightFaster-than-light (also FTL, superluminal or supercausal) travel and communication are the conjectural propagation of matter or information faster than the speed of light (c). The special theory of relativity implies that only particles with zero rest mass (i.e., photons) may travel at the speed of light, and that nothing may travel faster. Particles whose speed exceeds that of light (tachyons) have been hypothesized, but their existence would violate causality and would imply time travel.
Cyclic modelA cyclic model (or oscillating model) is any of several cosmological models in which the universe follows infinite, or indefinite, self-sustaining cycles. For example, the oscillating universe theory briefly considered by Albert Einstein in 1930 theorized a universe following an eternal series of oscillations, each beginning with a Big Bang and ending with a Big Crunch; in the interim, the universe would expand for a period of time before the gravitational attraction of matter causes it to collapse back in and undergo a bounce.
Orders of magnitude (time)An order of magnitude of time is usually a decimal prefix or decimal order-of-magnitude quantity together with a base unit of time, like a microsecond or a million years. In some cases, the order of magnitude may be implied (usually 1), like a "second" or "year". In other cases, the quantity name implies the base unit, like "century". In most cases, the base unit is seconds or years. Prefixes are not usually used with a base unit of years. Therefore, it is said "a million years" instead of "a mega year".
Void (astronomy)Cosmic voids (also known as dark space) are vast spaces between filaments (the largest-scale structures in the universe), which contain very few or no galaxies. The cosmological evolution of the void regions differs drastically from the evolution of the Universe as a whole: there is a long stage when the curvature term dominates, which prevents the formation of galaxy clusters and massive galaxies. Hence, although even the emptiest regions of voids contain more than ~15% of the average matter density of the Universe, the voids look almost empty to an observer.
Anthropic principleThe anthropic principle, also known as the "observation selection effect", is the hypothesis, first proposed in 1957 by Robert Dicke, that the range of possible observations that could be made about the universe is limited by the fact that observations could only happen in a universe capable of developing intelligent life in the first place. Proponents of the anthropic principle argue that it explains why this universe has the age and the fundamental physical constants necessary to accommodate conscious life, since if either had been different, no one would have been around to make observations.
Fifth forceIn physics, there are four observed fundamental interactions (also known as fundamental forces) that form the basis of all known interactions in nature: gravitational, electromagnetic, strong nuclear, and weak nuclear forces. Some speculative theories have proposed a fifth force to explain various anomalous observations that do not fit existing theories. The characteristics of this fifth force depend on the hypothesis being advanced. Many postulate a force roughly the strength of gravity (i.e.
Massive compact halo objectA massive astrophysical compact halo object (MACHO) is a kind of astronomical body that might explain the apparent presence of dark matter in galaxy halos. A MACHO is a body that emits little or no radiation and drifts through interstellar space unassociated with any planetary system (and may or may not be composed of normal baryonic matter). Since MACHOs are not luminous, they are hard to detect. MACHO candidates include black holes or neutron stars as well as brown dwarfs and unassociated planets.